Exploring the Properties of Primordial Matter at RHIC

Ralf Averbeck

GSI Helmholtzzentrum für Schwerionenforschung

Laboratoire de Physique Corpusculaire Clermont-Ferrand, France, November 28, 2008

Outline

SCIENTIFIC AMERICAN MAY 2006 WWW.SCIAM.COM Quark Soup PHYSICISTS RE-CREATE THE LIQUID STUFF OF THE EARLIEST UNIVERSE

M. Riordan and W. Zajc, Sci. Am., May 2006, 34-41

• some (!) highlights from the program at RHIC

Seminar, 11/28/2008

R. Averbeck, 🖬 🎫 🎞

• "quark soup"

why should

we care?

nucleus-nucleus

• probing this

medium in

collisions

final state

phase

initial state

hot and dense

Nuclear matter as QCD laboratory

matter

(6 types of quarks: up, down, charm, strange, top and bottom)

nuclei

QUARK

proton

- "ordinary" nuclear matter
 - 3 (light) constituent quarks
 - quarks interact via the exchange of gluons
 - gluons carry color charge!
- key observations
 - isolated quarks are NEVER observed ("confinement")
 - quark masses: ~1% of the nucleon mass

properties of QCD (Quantum Chromo Dynamics)

- QCD vacuum
 - NOT empty
 - complicated (more than the QED vacuum)

The QCD phase diagram unique tool to study strongly interacting matter far away from ground state: heavy-ion collisions

- highest temperature at lowest baryon density
 ⇒ colliders: RHIC @ BNL and LHC @ CERN
- moderate temperature at highest baryon density
 ⇒ fixed-target: FAIR @ GSI

RHIC

• RHIC = Relativistic Heavy Ion Collider

Iocated at Brookhaven National Laboratory

RHIC and its experiments heating of matter to T ~ 10¹² K (~180 MeV)

- RHIC (Relativistic Heavy-Ion Collider) located at Brookhaven National Laboratory
- p+p: √s ≤ 500 GeV (polarized beams!)
- A+A: √s_{NN} ≤ 200 GeV (per nucleon-nucleon pair)

2004

2005

Calendar year

 experiments with specific
 focus
 BRAHMS (until Run-6)
 PHOBOS

- (until Run-5)
- multi purpose
 experiments
 PHENIX
 STAR

R. Averbeck, **I**

2001

2002

2003

0.01

2000

2007

2008

Last update: 10 March 2008

2009

2006

The experimental challenge

STAR ONE central Au+Au collision at max. energy

• production of **MANY** secondary particles

Seminar, 11/28/2008

Different probes tell different stories

investigate evolution of a system

- that "lives" for ~10⁻²² s (~100 fm/c)
- in a volume ~10⁻⁴² m³ (~1000 fm³)
- with energy ~6 x 10⁻⁶ J (~40 TeV)

• hadrons: *π*, K, p, ...

- abundant, (mostly) final state
 - –yields, spectra → energy density, thermalization, hadrochemistry
 - − correlations, fluctuations, azimuthal asymmetries
 → collective behavior
- "hard" probes: jets, heavy quarks, direct γ
 - rare, produced initially (before quark-gluon matter forms!)
 - -probe hot and dense matter

- electromagnetic radiation:
 γ, e⁺e⁻, μ⁺μ⁻
 - rare, no strong interaction

- probe all time scales
- initial temperature

Final state blackbody radiation do the huge yields of various hadron species in the final state reflect a THERMAL distribution?

 spectrum of particles emitted from heavy-ion collisions at RHIC: nearly a (hadronic) blackbody!

Final state hadrochemistry do the huge yields of various hadron species in the final state reflect a THERMAL distribution?

• abundances in hadrochemical equilibrium

• final state: hadron gas close to phase boundary

Seminar, 11/28/2008

Elliptic flow → **early thermalization**

out-of-plane

- initial state of non-central Au+Au collision
 - spatial asymmetry
 - asymmetric pressure gradients
- translates into
 - momentum anisotropy in final state
 - Fourier expansion

$$E\frac{d^{3}N}{d^{3}p} = \frac{d^{3}N}{p_{\mathrm{T}}d\varphi dp_{\mathrm{T}}dy} \sum_{n=0}^{\infty} 2v_{n}\cos\left(n\left(\varphi - \Psi_{\mathrm{R}}\right)\right)$$

• elliptic flow strength $v_2 = \langle \cos 2(\varphi - \Psi_R) \rangle$

 shape "washes out" during expansion, *i.e.* elliptic flow is "self quenching"

Au nucleus

Ζ

Non-central Collisions

 \bullet v₂ reflects early interactions and pressure gradients

Au nucleus

in-plane

X

Hadron v₂ and hydrodynamics

12

• observation at RHIC

 the asymmetry of the azimuthal distribution of hadrons w.r.t the reaction plane is HUGE

Seminar, 11/28/2008

 the fine structure v₂(p_T) for different mass hadrons is in reasonable agreement with ideal hydrodynamics (PHENIX: PRL 91(2003)182301, Huovinen et al.: PLB 503(2001)58)

Seminar, 11/28/2008

R. Averbeck, 🔚 🎫 🔟

v₂ scaling: what is flowing?

scaling flow parameters by quark content

→ particles flow as if frozen out from a flowing soup of constituent quarks

Looking into the medium

• tomography - one way to establish properties of a system

- calibrated probe (e[±], X-rays with known beam energy & direction)
- calibrated interaction (known interaction mechanism!)
- suppression/absorption pattern reveals details about the interior

• tomography at RHIC

probe has to be "auto generated"
 → initial state hard parton scattering

good probes

- well calibrated in pp collisions
- slightly affected and well understood in hadronic matter
- strongly affected in a partonic medium

Probing dense matter: calibration

 (\mathbf{e})

Probing dense matter: tomography

• how to measure this?

• start with a probe unaffected by the medium!

Direct photons at √s_{NN} = 200 GeV

• photons from quark-gluon Compton scattering

direct photons are a calibrated probe no strong final state interaction: as expected!

Hadrons (π^0) at $\sqrt{s_{NN}} = 200 \text{ GeV}$

- pQCD in agreement with data from p+p collisions
- nuclear modification factor:

$$R_{AA} = \frac{\text{Yield in } Au + Au}{N_{binary} \times \text{Yield in } p + p}$$

Imiting factor for minimum R_{AA}: surface emission

High p_T suppression: opaque matter

• observations at RHIC

- photons are not suppressed
 - -no strong interaction
 - -binary scaling is OK
 - hadron suppression
 - no suppression in peripheral collisions
 → no dense medium
 - HUGE suppression in central collisions
- azimuthal correlation function
 - -complete absence of "away side" jet
 - \rightarrow absorption in medium

R. Averbeck, **E**

 (systematic studies of medium response)

Heavy-quark production

• heavy quarks (cc, bb) from hadronic collisions

- hard process ($m_q >> \Lambda_{QCD}$)
 - at leading order (LO):
 - quark-antiquark annihilation
 - gluon fusion
 - higher order processes important towards large \sqrt{s}

generic hard-probe study

R. Averbeck, **I**

- calibrate heavy flavor production in pp collisions
- probe the medium
 - interaction with medium ⇒ energy loss, flow?
- formation of bound states: quarkonia (J/ ψ , Y)

→complementary to other hard probes

Charm measurements at RHIC ideal (but very challenging in HI environment) direct reconstruction of charm Counts (× 10⁴/(10 MeV/c²)) d+Au decays (e.g. $\overline{D}^0 \rightarrow K^+ \pi^-$) (a) •STAR (for $p_{\tau} < 3 \text{ GeV/c}$) easier once displaced decay |y|<1 D(p_T<3GeV/c vertices can be resolved (~100 μm) PRL 94, 062301 (2005) 1.8 1.9 $M_{inv}(K\pi)$ (GeV/c²) alternative (but indirect, $D^{\pm}(D^{0})$ Meson and still challenging) 1.87 (1.87) GeV Mass contribution of semileptonic **BR D⁰** --> **K**π (3.85 ± 0.10) % decays to lepton spectra BR D --> e +X 17.2 (6.7) % **PHENIX & STAR** BR D --> μ +X 17.2 (6.6) %

e[±] from heavy flavor in p+p (√s=200 GeV)

Seminar, 11/28/2008

• non-photonic e^{\pm} from c $\rightarrow e^{\pm}$ and b $\rightarrow e^{\pm}$

- compare with FONLL
 - Fixed Order Next-to-Leading Log pQCD (M. Cacciari, P. Nason, R. Vogt

(M. Cacciari, P. Nason, R. Vogi PRL95,122001 (2005))

- -data ~ 2 x FONLL
 - -seen also in charm yields at
 - » DESY (photoproduction)
 - » FNAL (hadroproduction)
- consistent within large uncertainties
- bottom becomes important at high p_T!

Separating $c \rightarrow e$ from $b \rightarrow e$

B contribution to e[±] spectra consistent with FONLL

large uncertainties (experiment & theory) → need better data to disentangle contributions

Seminar, 11/28/2008

Probing the medium in Au+Au

- binary scaling of total e[±] yield from heavy-flavor decays
- high p_T e[±] suppression increasing with centrality
 - footprint of medium effects; similar to π^0 (a big surprise)

Nuclear modification factor R_{AA}

• heavy flavor compared with light hadrons

• bottom contribution at high p_T ?

• is bottom suppressed?!

needed: R_{AA} of identified charm and bottom hadrons

- careful:
 - kinematics: $p_T(e^{\pm}) < p_T(D)$
- intermediate p_T
 - indication for quark mass hierarchy as expected for radiative energy loss (Dokshitzer and Kharzeev,

PLB 519(2001)199)

- highest p_T
 - $\mathsf{R}_{\mathsf{A}\mathsf{A}}(\mathbf{e}^{\pm}) \sim \mathsf{R}_{\mathsf{A}\mathsf{A}}(\pi^{0}) \sim \mathsf{R}_{\mathsf{A}\mathsf{A}}(\eta)$

Energy-loss mechanism?

• e[±] R_{AA}: testing ground for various

parton energy loss (ΔE) models

- radiative ∆E only
 - Djordjevic et al., PLB 632(2006)81
 - Armesto et al., PLB 637(2006)362)
 - →would need a very large colour opacity with static scattering centers
- collisional ∆E included
 - Wicks et al., NPA 784(2007)426
 - van Hees & Rapp, PRC 73(2006)034913
 - →reduces R_{AA} significantly, but the challenge persists

alternative approaches

- collisional dissociation of heavy mesons (charm and bottom!)
 - Adil & Vitev, PLB 649(2007)139
- contribution from baryon enhancement
 - Sorensen & Dong, PRC 74(2006)024902
 - Martinez, Gadrat, Crochet, PLB 663(2008)55

Does charm flow?

non-zero elliptic flow strength v₂ of e[±] → charm flows! (what about bottom?)

heavy quark propagation through the medium > strong coupling!

<u>Viscosity / entropy density: n/s</u>

transport models

- Rapp & van Hees (PRC 71, 034907 (2005))
 - diffusion coefficient
 - $D_{HO} x 2\pi T \sim 4-6$
- Moore & Teaney (PRC 71, 064904 (2005))
 - relation between diffusion coefficient and viscosity
 - D_{HO}/ (η/(ε+P)) ~ 6
- at μ_B = 0: ε + P = Ts
- \rightarrow $\eta/s = (1.3-2.0)/4\pi$
 - close to conjectured lower quantum limit of $1/4\pi$ (η /s = 9/4 π for He at λ point)
 - consistent with other estimates of η /s based on flow and fluctuation measurements for light hadrons
- medium produced at RHIC = nearly perfect fluid

Closed heavy flavor (quarkonia)

- 1986: Matsui & Satz predict an "unambiguous" signature of QGP
 - color screening in the QGP

 → disappearance of quarkonia above certain temperature energy density thresholds
- quarkonia ↔ medium thermometer

- extensive measurements at CERN-SPS
- examples for theoretical dissociation temperatures

state	J/ψ	Xc	ψ'	r	χь	Υ'	χ_b'	Υ"
$E_s^i[GeV]$	0.64	0.20	0.005	1.10	0.67	0.54	0.31	0.20
T_d/T_c	1.1	0.74	0.1-0.2	2.31	1.13	1.1	0.83	0.75
T_d/T_c	~ 1.42	~ 1.05	unbound	~ 3.3	~ 1.22	~ 1.18	-	-
T_d/T_c	1.78-1.92	1.14-1.15	1.11-1.12	≳4.4	1.60-1.65	1.4-1.5	~ 1.2	~ 1.2

- different choices of effective T dependent potentials
 - free energy: S. Digal et al. Phys. Rev. D64 (2001) 094015
 - linear comb. of free energy & internal energy: C.Y. Wong hep-ph/0509088
 - internal energy: W.M. Alberico et al. Phys. Rev. D72 (2005) 114011

The story is more complex

<u>J/ψ at RHIC (Au+Au @ √s_{NN} = 200 GeV</u>)

- PHENIX measures J/ψ production at RHIC
 - $J/\psi \rightarrow e^+e^-$ at |y| < 0.35
 - $J/\psi \rightarrow \mu^+\mu^-$ at 1.2<|y|<2.2
- mid rapidity R_{AuAu} looks surprisingly similar to R_{PbPb} at SPS
- although the systems are very different:
 - different energy densities at a given N_{part}
 - different cold nuclear matter effects (x_{Bjorken}, σ_{abs}, ...)
 - different overall charm yield

RAA Nuclear modification factor O PHENIX, Au+Au, |y|<0.35, ± 12% syst</p> ♦ NA60, In+In, 0<y<1, ± 11% syst. □ NA38, S+U, 0<y<1, ± 11% syst. 0.8 0.6 0.4 0.2 PHENIX: PRL 98(2007) 232301 compilation of SPS data: E. Scomparin @ QM'06 350 250 300 400 150 200 Npart

R. Averbeck, **G**

R_{AuAu} (y≈0 @ RHIC) ≈ R_{PbPb} (@ SPS)

<u>J/ψ at RHIC (Au+Au @ √s_{NN} = 200 GeV</u>)

Forward rapidity "puzzle" at RHIC, more suppression at forward rapidity !

- two possible explanations
 - hot medium related
 - (re)generation of J/ψ from charm (anti)quarks in a deconfined medium
 - statistical hadronization
 - coalescence
 - regeneration

- cold matter related
 - modification of initial parton distribution functions in cold nuclear matter
 - (anti)shadowing
 - saturation

J/ψ (re)generation

• many approaches

- P. Braun-Munzinger, J. Stachel: PLB 490(2000)196
- R. Thews et al.: PRC 63(2001)054905
- L. Grandchamp et al.: PRL 92(2004)212301
- E. Bratkovskaya et al.: PRC 69(2004)054903
- L. Yan et al.: PRL 97(2006)232301
- A. Andronic et al.: NPA 789(2007)334
- A. Capella et al.: arXiv:0712.4331
- O. Linnyk et al.: arXiv:0801.4282
- and many others

• all explain

- R_{AA}(y=0) > R_{AA}(y=1.7)
- more c quarks to recombine at y=0
- all need reliable open charm input for quantitative constraints!

Initial PDF in nuclei

 saturation could suppress forward J/ψ in Au+Au gluon shadowing or antishadowing will affect J/ψ R_{AA}, too

- precise p(d)+A data are necessary to calibrate cold nuclear matter effects
 - are the existing d+Au data from RHIC good enough?

CNM effects in Au+Au

- propagate measured R_{dAu} to Au+Au in a Glauber model
 - completely data driven → no model dependence

- uncertainties are huge
- RHIC Run-8: increase d+Au statistics by factor ~30

J/y flow as a new smoking gun?

• charm flows!

J/ψ v₂ measurement → a smoking gun for recombination
 no decisive data from RHIC yet

Approaching a "Holy Grail"

- thermal radiation with T>>T_c would prove beyond any doubt the presence of a "quark-gluon" black body
- competition with photon emission from
 - hadron gas
 - initial pQCD processes (direct γ)

Seminar, 11/28/2008

Seminar, 11/28/2008

Thermal radiation at RHIC

• slope analysis of data:

- pQCD + exp. $Ae^{-\frac{p_T}{T}} + B \cdot N_{coll} \left(1 + \frac{p_T^2}{b}\right)^{-n}$
- fix B, b, and n from p+p Au+Au (min. bias)

- T = 224±16(stat)±18(sys)

- initial temperatures and times from theoretical model fits to data:
 - 0.15 fm/c, 590 MeV (d'Enterria et al.)
 - 0.2 fm/c, 450-660MeV (Srivastava et al.)
 - 0.5 fm/c, 300 MeV
 - (Alam et al.)
 - 0.17 fm/c, 580 MeV
- (Rasanen et al.)
- 0.33 fm/c, 370 MeV

(Turbide et al.)

from data: $T_{ini} > 220 \text{ MeV} > T_{c}$ from models: T_{ini} = 300 to 600 MeV $\tau_0 = 0.15$ to 0.5 fm/c

Summary

The medium is dense

Centrality: 0 - 10%

Centrality: 30 - 40% × 0.33

Centrality: 60 - 92% × 0.04

