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1 Introduction and Plan of Talk

If the strength of strong interaction is characterized by a large coupling

constant e.g. the pion nucleon interaction g2/4π = 15, then it is obvious

that perturbation theory makes no sense. Since the effective interaction

of pions at low energy is governed by the chiral theory, the corresponding

matrix element at the tree level is given by a power series expansion in

pion momenta. Using the perturbation technique for this type of

interaction is known as the ”Chiral Perturbation Theory (ChPT).

Although one also deals here with strong interaction, it is not obvious

that the perturbation theory cannot be used here. There are now two

approaches to ChPT. One advocated by Lehman in 1972 (H. Lehman,

Phys. Lett. 41B, 529 (1972)) for a zero mass pion and the other one by

Weinberg seven years later (S. Weinberg, Physica A 96 327 (1979)).

ChPT was however first proposed prior to the Lehman paper, in a rough

form, by L.F. Li and H. Pagels (Phys. Rev. Letters 27, 27, 1089 (1971)).

In the Lehman approach for the pion pion scattering, one does first the
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one loop perturbation theory, but then one must unitarize the result in

order to preserve the elastic unitarity. He called his approach ”Effective

Range Theory” which probably escaped attention of most readers. In the

Weinberg approach one has to calculate one loop, two loops ...etc.

Because one deals here with a non-renormarlizable theory, the number of

parameters grows larger with higher order. This program was followed

and accepted by many theorists in the last twenty years. Which

approach is correct? Or are they both correct, or wrong? Both methods

should be tested by experiments.

Because the resulting S-matrix is in general an analytic function, such a

power series expansion is only valid outside the cut. The question is how

to continue this function on to the cut in the physical region in order to

compare with experiments? A related problem which is also of

importance is knowing a few terms in a power series expansion of the

space like pion form factor (euclidean physics, e.g. lattice gauge pion

form factor calculation) can one say something on its time like behavior

in the low energy region?
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In this talk I wish to convince you that the existing pion vector form

factor experimental data could be used as a laboratory to test these

questions.

The plan of this talk is as follows. I shall first give a review of the

”grandpa” physics, the physics of the 50’s and 60’s of the last century,

and then the ”papa” physics of a more recent date.

• Sum Rules based on the Forward Dispersion Relation, Unitarity and the

Low Energy Theorems. All these Sum Rules are based on the Analyticity

of the S-matrix and also on the Conservation of the Probability.

-The Drell-Hearn-Gerasimov Compton Sattering Sum Rule

-The Adler-Weisberger Sum Rule for the Axial Coupling Constant

-The Goldberger-Oehme-Miyazawa Sum Rule for the Forward Pion

Nucleon Scattering

• The Non Relativistic Bethe Schwinger Effective Range Theory and its

Relativistic Generalisation (another consequence of the analyticity and

unitarity). .

5



• Chiral Perturbation Theory (ChPT) and the Unitarized Chiral

Perturbation Theory (UChPT) . The material used here is based on the

non perturbative technique for soft pion physics ((T. N. T., Phys. Rev.

Lett. 61 2526, 1988)), and a number of unpublished papers

(.arXiv:1002.2519[hep-ph], arXiv:9809476v1[hep-ph],

arXiv:9607378v2[hep-ph])

• ”New” Sum Rules for Low Energy Expansion Parameters of the Vector

Pion Form and Comparison with ChPT and UChPT. These ”New” sum

rules are even more convergent than those cited above, in particular the

r.m.s. radius of the pion is calculated in terms of the time like pion form

factor data and the measued pion pion P-wave phase shifts; the higher

derivatives of the pion form factor are calculated to test the validity of

ChPT and UChPT.

• Can one add the ChPT calculation to the Vector Meson Dominance

Amplitude in order to calculate the pion form factor?

• Physics at large Nc and the Pade Approximant method. (Power series

expansion in momenta is not as good as the Pade Approximant)
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1.1 The Drell Hearn Gerasimov Sum Rule

S.D. Drell and A.C. Hearn, Phys. Rev. Lett. 16 (1966) 908. S.B.

Gerasimov, Sov. J. Nucl. Phys. 2 (1966) 430.

Useful sum rules in particle physics deal with the crossing odd forward

amplitude. One writes an unsubtracted dispersion relation and using the

low energy theorm for this amplitude. The foward Compton amplitude

is:

f(ν) = f1(ν
2)e⃗′

∗

· e⃗ + νf2(ν
2)iσ⃗ · e⃗′

∗

× e⃗ (1)

DHG sum rule deals with a DR for νf2(ν
2)

Ref2(ν
2) =

1

4π2
P

∫
∞

0

[σA(ν′) − σP (ν′)

ν′2 − ν2
dν′2 (2)

σA(ν′) and σP (ν′) are respectively the total cross sections with proton

and photon spins antiparallel and parallel due to the unitarity relation.
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The low energy theorem is:

f2(0) = −1
2
(α/M2

p )κ2
p (3)

where α is the fine structure constant, κp the anomalous magnetic

moment of the nucleon and Mp is the nucleon mass. We then get the

DHG sum rule:

∫
∞

0

dν

ν
[σP (ν) − σA(ν)] =

2π2α

M2
p

κ2
p ≈ 205 µb (4)

Using experimental data on σP (ν) and σA(ν) ( for a review see , K.

Helbing, Prog. Part. Nucl. Phys. 57, 405-469 (2006)), we get:

LHS = 212 ± 6stat ± 16syst µb (5)

57 Hence the sum rule is satisfied !
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1.2 The Adler-Weisberger Sum Rule for the

axial nucleon coupling constant

1

g2
A

= 1 +
2m2

N

πg2
πNN

∫
∞

ν0

dν

ν
[σπ−p

tot (ν) − σπ+p
tot (ν)] (6)

This sum rule was derived using the current algebra technique for a zero

mass pion. (S. L. Adler, Phys. Rev. 140, 736 (1965); W. I. Weisberger,

Phys. Rev. 143, 1302 (1966).

Using the experimental data of the pion nucleon total cross sections on

the RHS of this equation one gets, gA = 1.24 as compared with the

experimental value 1.259 ± 0.017. The AW Sum Rule is therefore

satisfied!

Instead of using the sum rule technique, Weinberg pointed out that the

AW sum rule is simply the Weinberg pion nucleon scattering length

relations (S. Weinberg Phys. Rev. Lett. 17, 616 (1966)). His result is

independent of the high energy behavior of the pion nucleon scattering
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amplitude.

2 Goldberger-Oehme-Miyazawa Sum

Rule

This sum rule is similar to the Adler-Weisberger sum rule and was one of

the earliest sum rule in particle physics, dealing with the forward

crossing odd pi nucleon scattering, i.e. the difference between the π+ and

π− forward amplitude; using unitarity, one can evaluate the value for the

difference of the S-wave pion nucleon scattering lengths in isospin 1/2

and 3/2 in terms of the difference between the 1/2 and 3/2 total cross

sections (M. L. Goldberger, H. Miyazawa and R. Oehme, Phys. Rev. 99,

986 (1955). The sum rule result is in good agreement with data.
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3 The Bethe-Schwinger Effective Range

Theory, Its Generalisation and

Introduction to Non Perturbative

Method for Low Energy Physics

3.1 The Bethe-Schwinger Effective Range

Theory

Landau and Smorodinsky (Landau and J. Smorodinsky, J. Phys.

U.S.S.R. 8, 154 (1944)) suggested that an effective range expansion for

the the S-wave phase shifts δ :

k cot δ(k2) = − 1
a

+
1
2
r0k

2 + ... (7)

where k the relative momenta, a the scattering length and r0 the

effective range. Schwinger ( Phys. Rev. 72, 742A (1947) was the first
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person to give a general proof of the effective range expansion Eq. (7).

His proof is quite complicated. A year later Bethe (Phys. Rev. 76, 38

(1949)) gave a much simpler proof based on the physical picture of the

potential scattering theory of the Schrodinger equation.

Let us consider, for example, the S-wave scattering amplitude f(ν) and

omit the subscripts or superscripts spin and isospin. Setting ν = k2, the

elastic unitarity relation is:

Imf(ν) = ρ(ν) | f(ν) |2 (8)

where ρ(ν) =
√

ν is the non-relativistic phase space factor and ν is the

square of the relative momentum k. Eq. (8) implies that:

f(ν) =
eiδ(ν) sin δ(ν)

ρ(ν)
(9)

which is the same as:

f(ν) =
1

ρ(ν)(−i + cot δ(ν))
(10)

and hence any function representing δ, in particular, for tanδ or cotδ
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used in Eq. (9) or Eq. (10) would give rise to a partial wave amplitude

satisfying the unitarity relation.

There is however a restriction on the choice of the appropriate function,

namely the analytic property of the constructed partial wave amplitudes

which can be proved from general principles. Sincef(ν) is an analytic

function, its inverse is also an analytic function. A polynomial is analytic

function hence we arrive at the effective range expansion. This argument

leads to the use of:

a) The Inverse Amplitude Method (IAM)

b) The N/D method is used in order to satisfy the elastic unitarity

relation. It was Noyes and Wong who first pointed out that the effective

range is a consequence of unitarity and analyticity in the pole

approximation (the pole approximation which is usually done in the

phenomenology of the S-matrix theory in the old day, should be

interpreted as the Pade approximant for a power series expansion; it has

a good high energy behavior as will be seen later in this talk) . I do not

have time to discuss these topics, I wish to refer to my review article.
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3.2 Padé Approximant Method and Bubble

Summation or How to Unitarise a

Perturbation Calculation ?

Let us write the partial wave perturbation series as:

fpert(ν) = f0 + f1(ν) + ... (11)

where f0 is the tree amplitude which is assumed here, for simplicity, a

constant or a real polynomial (otherwise it has only the left hand cut

singularity). f1(ν) is the one loop amplitude satisfying the perturbative

unitarity, for ν > 0:

Imf1(ν) = ρ(ν)(f0)2 (12)

Let us construct the [0, 1] Padé approximant:

f [0,1](ν) =
f0

1 − f1(ν)
f0

(13)
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This equation gives rise to a geometric series constructed out of f0 and

f1. Expanding the denominator of Eq.(13) in a power series of f1/f0, its

first two terms agree with the perturbation expansion, Eq.(11). The

presence of the remaining terms is to preserve the elastic unitarity

condition because:

Imf [0,1](ν) = ρ(ν) | f [0,1](ν) |2 (14)

for ν > 0 and is a generalisation of the relativistic effective range theory.

The Padé approximant method is similar to the bubble summation of

the partial wave amplitude.

There are few methods in the relativistic particle physics to treat the

non-perturbation problem: the infinite geometric series of the bubble

summation used in the study of the Nambu-Jona-Lassinio model, or the

infinite ladder summation of the Bethe-Salpeter equation used to treat

the bound state problem in Quantum Electrodynamics. These

treatments are not as systematic as the perturbation series, but they

have successfully been used to treat the non-perturbative phenomena.
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I discuss so far the scattering problem. In 1988 without knowing the

Lehman paper on ChPT, I proposed that the IAM, N/D and Padé

methods should be used for the pion form factor problem to treat the

non perturbative effect (T. N. T., Phys. Rev. Lett. 61 2526, 1988). A

few years later with the collaboration of Dobado and Herrero the pion

pion scattering problem was studied(A. Dobado, M.J. Herrero and T. N.

T., Phys. Lett. B 235 (1990) 129, 134.

4 ”New” Sum Rules for Low Energy

Expansion Parameters of the Pion

Form Factor

These ”New Sum Rules were written in 1998 (T.N.T.

arXiv:9809476v1[hep-ph]) but was never published. In the DHG, AW,

GOM sum rules, the unitarity relation and experimental data enable us

to include all elastic and inelastic effect by measuring the total cross
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sections. For the pion form factor there is no such optical theorem to be

used in the dispersion relation. However, it is an experimental fact that

the pion form factor decreases rapidly with experiment at large energy

above the ρ resonance , one can saturate the sum rules with the elastic

unitarity. This can be tested using the sum rule for the charge. With

this fact, one can calculate the r.m.s. radius of the pion, the second,

third derivatives... of the pion form factor with the accuracy of 5% or

better which is the order of the accuracy of the DHG sum rule (the

higher the derivatives the better is the elastic unitarity assumption).

And this was done with existing experimental data!

Because the vector pion form factor V (s) is an analytic function with a

cut from 4m2
π to ∞, the nth times subtracted dispersion relation for

V (s) reads:

V (s) = a0 + a1s + ...an−1s
n−1 +

sn

π

∫
∞

4m2
π

ImV (z)dz

zn(z − s − iϵ)
(15)

where n ≥ 0 and, for our purpose, the series around the origin is

considered. Because of the real analytic property of V (s), it is real below
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4m2
π. By taking the real part of this equation, ReV (s) is related to the

principal part of the dispersion integral involving the ImV (s) apart from

the subtraction constants an.

The polynomial on the R.H.S. of Eq. (15) will be referred in the

following as the subtraction constants and the last term on the R.H.S. as

the dispersion integral (DI). The evaluation of DI as a function of s will

be done later. Notice that an = V n(0)/n! is the coefficient of the Taylor

series expansion for V (s), where V n(0) is the nth derivative of V (s)

evaluated at the origin. The condition for Eq. (15) to be valid was that,

on the real positive s axis, the limit s−nV (s) → 0 as s → ∞. By the

Phragmen Lindeloff theorem, this limit would also be true in any

direction in the complex s-plane and hence it is straightforward to prove

Eq. (15). The coefficient an+m of the Taylor’s series is given by:

an+m =
1

π

∫
∞

4m2
π

ImV (z)dz

z(n+m+1)
(16)

where m ≥ 0. The meaning of this equation is clear: under the above

stated assumption, not only the coefficient an can be calculated but all
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other coefficients an+m can also be calculated. The larger the value of m,

the more sensitive is the value of an+m to the low energy values of

ImV (s). In theoretical work such as in ChPT approach, to be discussed

later, the number of subtraction needed is such that to make the

dispersion integral converges.

It is important to note that if ImV (s) is taken from experiment, i.e.

Unitarity is satisfied, depending on the high energy behavior of V(z),

there are large cancellation between the subtraction constants and the

Dispersion Integral (in other words, one should not do more subtractions

than what is needed). This type of cancellation does not exist if ImV is

calculated by a Perturbation Theory because Unitarity is not respected.

If s−1V (s) → 0 as s → ∞ which is a weak assumption, the once

subtracted dispersion relation for the vector pion form factor is:

V (s) = 1 +
s

π

∫
∞

4m2
π

ImV (z)

z(z − s − iϵ)
dz (17)

The elastic unitarity for the pion form factor states that the phase of the
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pion form factor in the time like region below the inelastic threshold has

the phase of the P-wave pion pion phase shift δ.

ImV (z) =| V (z) | sin δ(z) (18)

and

ReV (z) =| V (z) | cos δ(z) (19)

Because | V (z) | and δ are experimental quantities, ImV and ReV(z) can

be determined.

From experiment data, because of the smallnes of the multiple pion

production at low energy, it is expected that this relation holds below 1.3

GeV. To have a feeling how good is this assumption, we can assume that

the vector form factor vanishes at ∞ ,

We shall first to make a strong assumption that the pion form factor

vanishes as V (s) → 0 as s → ∞ on the cut. This is quite plausible as we

deal with a bound state quak antiquark. Then there is no contribution
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from the circle at ∞ to the dispersion relation. Then we can evaluate:

a0 =
1
π

∫
∞

4m2
π

ImV (z)dz

z
(20)

Cutting off the integral at 1.7 GeV 2, we get a0 = 1.02 ± .08 whereas

theWard Identity requires this value to be exactly 1. This result shows

that the dispersion integral is almost saturated by the elastic unitarity

relation. This will be more so for the higher derivatives because of the

larger power in the denominator of the sum rules. The sensitivity of this

integral to the high energy behavior of ImV (z) is the same as in the

DHG sum rule. Hence the calculation of the pion r.m.s radius and higher

derivatives are even more reliable because of the larger power in the

denominator of the sum rule.

The result of the determination of the r.m.s of the pion, a2 = c1 and

a3 = c2 are shown in Table 1. The calculated value of the r.m.s. radius

of the pion agrees very well with that obtained from direct measurement.

The value of a’s are much more accurate than the values obtained
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fromτdecays and e+ + e− experiments.

Figures and Table given here are of circa 1998. An updated version

of Table1 and figures is in the process of preparation with the

collaboration of Phuoc Ha using better and more recent data. It is

possible to get an estimate of the high energy contribution using

experimental data using the fact that ImV (z) ≤ | F (z) | in this

region.

We have here a very exceptional case of the dominance of the

elastic unitarity relation which enables to calculate the low energy

parameters. Had we studied the pion form factor using the phase

representation, we could not control the high energy contribution

beyond the elastic region, because the pion form factor phase in the

high energy region was completely unknown.
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5 Calculation of the Vector Pion Form

Factor

a) Theoretical Consideration: One Loop CPTH Result

The one loop ChPT result can be expressed in the dispersion

language:

V pert.(s) = 1 +
s

sR1

+
1

96π2f2
π

((s − 4m2
π)Hππ(s) +

2s

3
) (21)

where the last term behaves as s2 at low s. The second term on the

R.H.S. is the subtraction constant and is the experimental r.m.s.

radius of the pion. The last term is the prediction of the one loop

ChPT. For 2-loop calculation, one would need one more

subtraction which can be determined by fitting data and the

prediction of ChPT is the term which behaves at low s as s3.
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b) Non Perturbative Approach: Elastic Unitarity

Constraint

If one imposes the constraint of the elastic unitarity in the

dispersion integral one would have an integral equation of the

Omnes-Muskhelishvili whose solution is well-known. The one-loop

ChPT result corresponds to a first iteration of of this integral

equation. It has been shown that (TNT Phys. Rev. Lett. 61

(1988) 2526) the solution of the integral equation, to a good

accuracy, be approximated by the Pade approximant:

24



5.1 Can one add ChPT calculation to Vector

Meson Dominance amplitude to calculate

the pion form factor?

V (0,1) =
V tree

1 − V 1−loop

V tree

(22)

where V tree refers to the tree amplitude which is equal to unity and

V 1−loop refers to the one loop amplitude, i.e. the last two terms on

the R.H.S. of Eq. (21). The Padé approximant method yields V(s)

satisfying the elastic unitarity relation. It is just a bubble

summation of the one-loop graph. Fixing the value of sR1such that

the phase of the form factor is 90 degree the r.m.s. radius of the

pion is 15 percent too small. This is understandable because we

neglect the inelastic and/or higher resonances contribution.
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c) Deviation from the Elastic Unitarity Constraint At high

energy the contribution of the ωπ and possibly the ρππ channels

etc are experimentally important. The calculation of this

contribution to the pion form factor is quite complicated but we

can derive a similar equation to the Muskelishvilli-Omnès equation:

Instead of the M.O integral equation, we now have:

V (s) = 1 +
s

sR1

+
s2

π

∫
∞

4m2
π

V (z)f∗

1 (z) + σi(z)

z2(z − s − iϵ)
dz (23)

where f1(s) = ηeiδ(s)
−1

2i , η being the inelastic factor, and σi(s) being

the inelastic contribution to the unitarity relation and differing

from zero for s above the inelastic threshold si. The solution for

this equation is

V (s) =
1

D(s)
[1 +

1

π

∫
∞

si

2D(z)Re(σieiδ)dz

(1 + η)e−iδz(z − s − iϵ)
] (24)
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where

D−1(s) = exp(
s

π

∫
∞

4m2
π

δ1(z)

z(z − s − iϵ)
dz) (25)

We also have to require that the first derivative of V (s) at s=0 to

be sR−1.

Below and sufficiently far from si, e.g. the ωπ threshold, we can

roughly parametrise the contribution of the second term on the

R.H.S. of Eq. (24) as a polynomial Pn(s) which is real for s < si

and is the polynomial ambiguity in the solution of the

Muskhelishvilli-Omnès equation. Because of the normalisation

Pn(0) = 1, the introduction of this factor will not influence the

Ward identity, but does influence the value of the r.m.s.value of the

pion radius (T. N. Truong, Phys. Rev D30, 1509 (1984)). This type

of approximation is reliable for energy below the inelastic threshold

si, but is wrong at the inelastic threshold and also at higher energy.
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(From the radius of convergence of the power series expansion for

this effect , we also expect that this parametrisation does not hold

for a large space like momentum transfer.

We shall fit the experimental data below with the simple expression

(1 + αs/sρ), where α is a constant in order to simulate

phenomenologically the inelastic effect. The pion form factor can

now be written in its final form as:

V f (s) =
1 + αs/sρ

1 − s/sR1 −
1

96π2f2
π
{(s − 4m2

π)Hππ(s) + 2s/3}
(26)

There are parameters in this equation, α and ρ mass. α can be

fixed by the magnitude value of the pion form factor at the mass of

ρ. The ρ width is calculated and is simply the KSRF relation.

One can unitarized the two-loop ChPT result to get a similar

results (Hannah).
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The expression for the UChPT V f (s) is approximately same as the

one loop ChPT V pert.(s) if one let the ρ mass becomes much larger

than its physical value i.e. much larger than 1.4 GeV.

It is clear that one must obey the unitarity relation.

It should be noticed that the expression for V f (s) is also useful for

lattice gauge calculation of the pion form factor where the pion

masses used in the calculation deviate substantially from its

experimental value.
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Figure 1: The square of the modulus of the vector pion form factor

V (s) as a function of the energy squared s. The experimental data

are from e+e− data. . The dash line curve is the IAM or Pade result

(UChPT) of the one loop ChPT fitted to give the correct experimen-

tal P-wave phase shifts which goes through 90 degrees at the ρ mass.

It yields however a too low value of the r.m.s. pion radius. The solid

curve is the UChPT multiplied by a nomial (1+0.14s/sρ) simulating

the contribution from higher resonances and /or inelastic effects.
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Figure 2: The solid circles are the experimental phase shifts as deter-

mined by the pion pion scattering, the solid curve is the calculated

pion form factor phase as given by the UChPT calculation.
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Figure 3: The imaginary part of the vector pion form factor ImV (s)

as a function of the energy in the GeV unit. The solid curve is

the experimental result as calculated by the elastic unitarity relation

using the experimental data; the long-dashed curve is the two-loop

ChPT calculation, the medium long-dashed curve is the one-loop

ChPT calculation, the short-dashed curve is the UChPT one loop

calculation with the inelastic effect and/or higher resonances taken

into account.
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Figure 4: The real part of the vector pion form factor ImV (s) as a

function of the energy in the GeV unit. The curves are the same as

given in Fig. 3.
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e+e− τ Sum Rule ChPT1 ChPT2 UChPT

⟨r2⟩π (fm2) (.439 ± .008) (.439 ± .008) .45 ± .015 ⋆ ⋆ .454

c1 (GeV−4) (6.8 ± 1.9) (3.3 ± 1.7) 3.9 ± .10 .626 3.8 3.98

c2 (GeV−6) (−0.7 ± 6.8) (13.2 ± 5.7) 9.7 ± .4 2.3 4.1 10.2

Table 1: Results of calculations of ⟨r2⟩π, c1, c2 using Sum Rules,

one- loop ChPT1, two-loop ChPT2 and UChPT with inelastic uni-

tarity The result of the one-loop ChPT calculation for c1 and c2 is

wrong, the two-loop ChPT calculation for c2 is better but does not

agree with the experimental data. The Sum Rules and UChPT cal-

culations of ⟨r2⟩π are in good agreement with the experimental data;

the calculation of c1 and c2 by the Sum Rules and UChPT are in

good agreement with each other and also with the rough experimental

data
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5.2 Can one add ChPT calculation to Vector

Meson Dominance amplitude to calculate

the pion form factor?

This is the case of double counting the logarithm term. One has:

V mix(s) = V f (s) +
1

96π2f2
π

((s − 4m2
π)Hππ(s) +

2s

3
) (27)

The second term on the R.H.S. of this equation is the extra term

which one adds. Its presence is not visible in the time-like region

due to the dominance of V f (s) term, but the space like data almost

exclude it.
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Figure 5: The space like pion form factor. The lower curve is cal-

culated by the one loop UChPT calculation with the inelastic effect

and/or higher resonances taken into account ; the upper curve is

given by the vector meson dominance with the one loop ChPT re-

sult added : the experimental data at high momentum transfer al-

most excludes this possibility. These two curves are however almost

identical (within experimental errors) in the time like region below

1 GeV.
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6 Physics at large Nc and the Pade

Approximant method. (Power series

expansion in momenta is not as good

as the Pade Approximant)

Because f2
π → ∞ as the number of color becomes large, the

expression for the vector form factor is just a pole. The form factor

is simply the rho resonance.

7 Conclusion

It is shown in this talk that the restriction of unitarity is important

for soft pion physics. The IAM, N/D and Pade approximant

methods are useful to implement the unitarity condition. Because
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ChPT does not satisfy the unitarity constraint, it has no predictive

power without making further assumptions. It may however be

used to correlate various low energy expansion parameters.

I should like to point out that approximation for an analytic

function means that it should be valid over a wide region of energy,

not just a small region. In the case of the pion form factor

calculation, this region is the elastic region which includes the ρ

resonance which is the main feature of the low energy physics. Any

calculation which does not include this resonace is bound to fail .

This is the meaning of the Dispersion Relation or Hilbert

Transform relating the real part of an analytic function to a

dispersion integral over its imaginary part over a large energy

region or equivalently the mathematical theorem about the equality

of two analytic functions. I should like to thank Dick Blankenbecler

for having encouraged me to follow this line of physics. When he

looked at my unpublished paper 15 years ago, he commented that
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”There is not such a thing called a small analytic function” as

commented by one of his old colleague at Princeton when he was

young and was doing the S-matrix theory in Princeton. The

difference of the pion form factor calculations between ChPT and

UChPT are extremely small at low energy, but become very large

at the ρ resonance!

I would like to apologize to those who have used ChPT; I do not

wish to offend them, but would like to suggest that the power series

expansion for the S-matrix used in the Effective Chiral Lagrangian

is only valid outside the unitarity cut (a fundamental property of an

analytic function). Effort should be done in finding suitable

non-perturbative methods to continue this amplitude on to the cut

which is the same problem that one has to face in the Euclidean

lattice gauge calculation. My answer to this problem is not only the

analyticity but also the unitarity constraints have to be respected.

Thank you for your patience and tolerance.
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