

## Optimization of Cut-Based EID Menus for Run2 && Selection Optimization for the ttH 3 Lepton Final State at 13TeV

## Chao Wang

## Supervisor: Cristinel Diaconu, Emmanuel Monnier, Lianliang Ma







- Qualification task
  - Optimization of cut-based electron identification menus for Run2 at low Pt
- ttH 3 Lepton Final State at 13TeV Analysis
  - ttH overview
  - Cut based study and selection optimization

# **Optimization of cut-based EID menus**

## Motivation:

- Lower energy background is higher due to low energy photo and pion
- Run2 has a higher luminosity than run 1 and pile-up situation us different
- Reconstruction and the identification menus have also to be retuned
  - Signal:  $J/\psi \rightarrow ee$  and  $Z \rightarrow ee$
  - Background: Inelastic minimum bias and dijet filtered, ET(jet) > 17 GeV
  - The 9 variables are considered due to their separation power are:

f3, wstot, ERatio, RHad, R $\eta$ , R $\phi$ , W $\eta$ 2, eOverP,  $\Delta \Phi$ 

## Strategy:

- Pre-selection
  - Truth match used for signal, and anti-truth match used for background Et: [5,20]; |eta|<2.47
- Cleaning cuts were applied to avoid cuts in tails of distributions
- Optimization carried out in groups of variables(correlation and pileup dependence) TMVA Cut-based method to optimize the cuts
- A target efficiency was decided for each low Et bin

   Flatness in efficiency desired
- Post-optimization, cuts were smoothened
  - Avoid jumps in cut values from one bin to next
- Inclusiveness of menus ensured
  - Loose is looser than medium and medium is looser than tight
- Monotonicity of cut values as a function of Et
  - Cut value in the i-th eta bin always greater than or less than i-th eta bin in the next Et bin

| Menus  | 5-10(GeV) | 10-15(GeV) | 15-20(GeV) |
|--------|-----------|------------|------------|
| Loose  | 0.88      | 0.88       | 0.88       |
| Medium | 0.75      | 0.75       | 0.80       |
| Tight  | 0.60      | 0.65       | 0.75       |

# **Optimization of cut-based EID menus**



# Higgs Boson

## Higgs Boson (125GeV) Production at LHC



| Cross section (pb)<br>at $\sqrt{s} = 8$ (7) TeV |               |  |  |
|-------------------------------------------------|---------------|--|--|
| ggF                                             | 19.52 (15.32) |  |  |
| VBF                                             | 1.58 (1.22)   |  |  |
| WH                                              | 0.70 (0.57)   |  |  |
| ZH                                              | 0.39 (0.31)   |  |  |
| tĪH                                             | 0.13 (0.09)   |  |  |
| Total                                           | 22.32 (17.51) |  |  |

| Cross Section(pb) at 13TeV |        |  |  |  |
|----------------------------|--------|--|--|--|
| ggF                        | 43.92  |  |  |  |
| VBF                        | 3.748  |  |  |  |
| WH                         | 1.380  |  |  |  |
| ZH                         | 0.8696 |  |  |  |
| ttH                        | 0.5085 |  |  |  |
|                            |        |  |  |  |

### a factor of 4 in 13 TeV



# Top and Higgs: the Special Relationship



 $t\bar{t}H$  production with smallest cross section. Test properties and give direct access to top-Higgs coupling.

# $t\bar{t}H$ Signature with 3 Leptons



- 3 leptons, Lepton charges' sum = +/-1
- High jet multiplicity, b-jets

Lep0: the lepton with no same-charge partner(never fake lepton for  $t\bar{t}$ , Z + jets background)

Lep1:  $\Delta R$  closet to the Lep0

Background

Events same final state as the signal (irreducible backgrounds), three true charged leptons:  $t\bar{t}V$ ,  $W^{\pm}Z$ , VVV and ZZ t t t  $\mathbf{u} \rightarrow \mathbf{u}^{+} \mathbf{u$ ∕d Obs: top-> bW ; W/Z can decay to leptons.

Events with a non-prompt or a fake lepton selected as prompt lepton, events with misreconstructed charge:  $t\bar{t}$ ,  $Z + jets, W^+W^-$ .





 $\sqrt{d}$ 

Signal: leptons (some fake), low jet multiplicity, in general no b-jets.

# **Cut-based Study and Selection Optimization**

#### Motivation

- Toward to Run2 Condition(higher energy scale and high pile-up)
- New b-tagging and some CP tools(Lep ID and Isolation...)

#### Sample Usage(MC15a samples):

- Z+jets: Madgraph+Pythia;
- ttW: MadGraphPythia;
- ttbar: PowhegPythia
- VV: Sherpa

#### TTHtoLeptonsPreliminarySelection: "preliminary" selection for Moriond 2016 and Event Selection

ttZ:

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/TTHtoLeptonsPreliminarySelection

MadGraphPythia

ttH( semilep + dilep ): aMcAtNloHerwigpp

ttbar(singletop, ttww, 4Top): PowhegPythia

#### Electrons

#### • pt > 10 GeV

- |eta| < 2.47, and not 1.37 < |eta| < 1.52 (use el->caloCluster()->etaBE(2))
- pass Loose Likelihood ID
- |z0 sin theta| < 2 mm</li>
- |d0 significance| < 10</li>
- pass isolation (Loose working point in IsolationSelectionTool)

#### Muons

- pt > 10 GeV
- |eta| < 2.5
- pass loose muon quality requirement: <u>MuQuality</u> ≤ 2 (or muon\_isLoose = 1 with group ntuples)
- |z0 sin theta| < 2 mm</li>
- |d0 significance| < 10</li>
- pass isolation (Loose working point in IsolationSelectionTool)

#### Jets

- pass jet clean criteria ("LooseBad" in the JetCleaningTool)
- pt > 25 GeV
- |eta| < 2.5
- remove jets with |JVT| < 0.64 and |eta| < 2.4 and pt < 50 GeV (use jet->jetP4("JetEMScaleMomentum").eta())
- BTag: <u>BTagMV2c20</u> > -0.4434 (77% eff)

#### Tau Jets (hadronically decaying tau lepton)

- abs(charge==1)
- (nTracks ==1 || nTracks ==3)
- eta : [0, 1.37], [1.52, 2.5]
- JetIDBDTMedium == 1
- pT > 25 GeV
- EleOLR in TauSelectionTool

# **Cut-based Study and Selection Optimization**

#### pass lepton triggers

o in MC : HLT\_mu20\_iloose\_L1MU15 || HLT\_mu50 || HLT\_e24\_Ihmedium\_L1EM18VH || HLT\_e60\_Ihmedium || HLT\_e120\_Ihloose

- in Data : HLT\_mu20\_iloose\_L1MU15 || HLT\_mu50 || HLT\_e24\_Ihmedium\_L1EM20VH || HLT\_e60\_Ihmedium || HLT\_e120\_Ihloose
- · select leptons (electron/muon/tau) and jets following above Object Selection
- · Overlap removal following run-I recommendation, which is
  - o if an electron and muon candidate are within 0.1 of each other: remove the electron
  - If two electron candidates within 0.1 of each other: remove the one with lower pt
  - o if an electron and a jet are within 0.3 of each other: remove the jet
  - o if a muon and a jet are within 0.04+10[GeV]/pT(muon) of each other: remove the muon
  - o if an electron and a tau are within 0.2 of each other: remove the tau
  - o if an muon and a tau are within 0.2 of each other: remove the tau
  - o if a tau and a jet are within 0.3 of each other: remove the jet

#### Selection in three leptons channel

- · basic selection (see above)
- requiring exactly three light leptons : sum of lepton charge = +/- 1
- two same sign lepton pt > 20 GeV and the OS lepton pt > 10 GeV
- any of the leptons matched to any of the triggers with pt >25 GeV (see above trigger names)
- Z mass veto : [81, 101] GeV
- · Invariant mass of the two opposite sign lepton great than 12 GeV

 $Z_0$  significance estimator =  $\sqrt{2((S + B)\ln(1 + S/B) - S)}$ 

# Selection Optimization -- b tagging and jet multiplicity

Task1: b tagging working point and Jets multiplicity

Goal: test and find a good b tagging working point and Jet requirement



| B Tagging Working Points | 30     | 50     | 60     | 70    | 77     | 80     | 85    | 90     |
|--------------------------|--------|--------|--------|-------|--------|--------|-------|--------|
| tīH                      | 52.7   | 80.5   | 92.0   | 102.3 | 107.8  | 110.3  | 114.4 | 118.8  |
| Total Background         | 1698.0 | 2847.2 | 3412.7 | 4024  | 4735.5 | 5059.8 | 5753  | 7244.3 |

All events are normalized to 100fb^-1

• Best jet combinations under each b-tagged efficiency.

Here 4-0 or 3-2 means: (NJet  $\geq$  4 and NbJet  $\geq$  0) or (NJet  $\geq$  3 and NbJet  $\geq$  2)

| B Tagging Working Points | 30         | 50         | 60         | 70         | 77   | 80  | 85  | 90   |
|--------------------------|------------|------------|------------|------------|------|-----|-----|------|
| Jets Combinations        | 4-0 or 3-2 | 4-1 or 3-2 | 4-1 or 3-2 | 4-2 or 4-1 | 4-2  | 4-2 | 4-2 | 4-2  |
| Significance             | 1.62       | 1.9        | 1.97       | 1.96       | 2.03 | 2.2 | 2.2 | 2.07 |

• Signal events number for the best jet combinations and Run1 jets' requirement under each b-tagged efficiency

| B Tagging Working Points | 30         | 50         | 60         | 70         | 77  | 80  | 85  | 90  |
|--------------------------|------------|------------|------------|------------|-----|-----|-----|-----|
| Jets Combinations        | 4-0 or 3-2 | 4-1 or 3-2 | 4-1 or 3-2 | 4-2 or 4-1 | 4-2 | 4-2 | 4-2 | 4-2 |
| ttH                      | 73         | 53         | 62         | 62         | 33  | 36  | 43  | 52  |
| Run1 Jets' Requirement   | 4-1 or 3-2 |            |            |            |     |     |     |     |
| ttH                      | 34         | 53         | 62         | 72         | 74  | 77  | 81  | 87  |

77% b-tagging working point and (NJet >= 4 and NbJet >= 1 ) or (NJet >= 3 and NbJet >= 2 ) are chosen as the baseline for Moriond2016

# Selection Optimization -- Lepton ID and Isolation tool

## Task2: Lepton ID and Isolation tool Study Goal: Isolation working point and lepton ID

| Working point                              | Objects     | Calo isolation              | Track isolation            | Combined isolation                                                 |
|--------------------------------------------|-------------|-----------------------------|----------------------------|--------------------------------------------------------------------|
| Tight                                      | 96%         | 99%                         | 95%                        |                                                                    |
| LooseTrackOnly                             | all leptons | -                           | 99%                        | 99%                                                                |
| Loose                                      | all leptons | 99%                         | 99%                        | 99%                                                                |
| Gradient                                   | all leptons | ε=0.1143*pT+92.14 %         | ε=0.1143*pT+92.14 %        | $\epsilon(25 \text{ GeV}) = 90\%, \epsilon(60 \text{ GeV}) = 99\%$ |
| GradientLoose                              | all leptons | ε=0.057*pT+95.57 %          | ε=0.057*pT+95.57 %         | $\epsilon(25 \text{ GeV}) = 95\%, \epsilon(60 \text{ GeV}) = 99\%$ |
| FixedCutTight (previously EL0p06)          | electrons   | Cut: topoetcone20/pT < 0.06 | Cut: ptvarcone20/pT < 0.06 | -                                                                  |
| FixedCutTightTrackOnly (previously MU0p06) | muons       | -                           | Cut: ptvarcone30/pT < 0.06 |                                                                    |
| FixedCutTightTrackOnly                     | electrons   | -                           | Cut: ptvarcone20/pT < 0.06 |                                                                    |
| FixedCutLoose                              | electrons   | Cut: topoetcone20/pT < 0.2  | Cut: ptvarcone20/pT < 0.15 | •                                                                  |
| FixedCutLoose                              | muons       | Cut: topoetcone20/pT < 0.3  | Cut: ptvarcone30/pT < 0.15 |                                                                    |

➤ Lepton ID: loose, medium, tight

Jets 'requirement:

4 jets of which at least one must be b-tagged or exactly 3 jets of which at least 2 are b-tagged

Different Isolation working points and lepton ID requirements are applied to **lep0, lep1, lep2** 

# Selection Optimization -- Lepton ID and Isolation tool



# Summary

## Electron Identification menu

released in the official ATLAS offline and trigger software framework

## Selection Optimization of ttH 3l final states

- > 77% b tagging working point, jet multiplicity
- $\blacktriangleright$  Isolation working point and lepton ID
- ➢ Baseline for Moriond 2016

## Plan for the next

- Estimation of fake background events (take the run1 strategy)
- Matrix Method study
  - Preliminary results and need more statistics and tests

# Thank you for your attention!

# Backup

## Variables used in the EID menu

|         | Variables       | Loose | Medium | Tight |
|---------|-----------------|-------|--------|-------|
|         | Eratio(Demaxs1) | x     | x      | x     |
|         | wstot           | Х     | x      | x     |
| Shower  | Weta2           | Х     | x      | x     |
| Shape   | Reta            | Х     | х      | х     |
|         | Rphi            |       | x      | x     |
|         | f3              |       | х      | х     |
|         | Rhad            | Х     | x      | x     |
|         | Rhad1           | Х     | х      | х     |
|         | deltaEta        | Х     | x      | x     |
| Match   | deltaPhi        |       |        | Х     |
|         | EoverP          |       |        | x     |
|         | nSi             | X     | Х      | х     |
|         | nPix            | Х     | х      | х     |
| Track Q | nBlayer         | Х     | х      | х     |
|         | F HT            |       | x      | x     |
|         | nTRT            |       |        | Х     |

Discriminating variables used in the calorimeter are generically referred to as "shower-shapes"

## Variables' list

| Variable    | Definition                                                                                            |
|-------------|-------------------------------------------------------------------------------------------------------|
| nSiHits     | Hits on silicon detector                                                                              |
| nPixHits    | Hits on Pixel detector                                                                                |
| nBlayerHits | Hits on b-layer                                                                                       |
| nTRTHits    | Hits on TRT detector                                                                                  |
| TRatio      | TRTHighThresholdHits over TRT hits                                                                    |
| d0          | Longitudinal distance between collision point and primary vertex                                      |
| deltaEta    | deltaEta between cluster and track                                                                    |
| f3          | Fraction of energy deposit in the third layer of electromagnetic calorimeter                          |
| f1          | Fraction of energy deposit in the first layer of electromagnetic calorimeter                          |
| rHad        | Et of hadronic calorimeter over Et of electromagnetic calorimeter                                     |
| rHad1       | Et of first layer of hadronic calorimeter over Et of electromagnetic calorimeter                      |
| Reta        | In second layer of electromagnetic calorimeter, energy deposit in the middle 3 cells over the whole 7 |
|             | cells in eta direction                                                                                |
| Weta2       | Horizontal width of shower in the second layer of electromagnetic calorimeter                         |
| wstot       | Shower width in the first layer of electromagnetic calorimeter                                        |
| DEmaxs1     | Difference between largest and second largest energy deposits in first layer of electromagnetic       |
|             | calorimeter over total energy deposit                                                                 |



Figure 9: Weta2

Figure 10: wstot

Figure 11: DEmaxs1