= WWW Analysis with Run I Data =

Cristinel Diaconu, Yanwen Liu, Emmanuel Monnier, Ruiqi Zhang

WWW Full Leptonic Analysis

=

Introduction

Event Pre-Selection of full leptonic channel

- Pre-selection:
 - Data quality
 - Data must pass a selection ensuring that the detector and LHC conditions were good enough to introduce no selection bias.
 - Primary vertex
 - > The event must contain a primary vertex with 3 tracks.
 - Trigger
 - > High pt leptons with medium or tight quality, with various pT thresholds(25 GeV, 60 GeV) and isolation criteria.
 - 3 lepton selection
 - Exactly 3 leptons with Pt>20 GeV

WZ->IIIv

Simulated using Powheg +Pythia 8 with three lepton filter. Charge mis-id contribution determined in data.

Fake Lepton (W,Z,WW,ttbar)

Uses data-driven estimate via Generalized Matrix Method.

ZZ->||||

Estimated in same manner as WZ.

Zgamma

Estimated with MC using Sherpa.

ttbarV

Estimated from MC using Madgraph + Pythia samples with three lepton filter.

ZWW+ZZZ

Estimated using Madgraph+ Pythia.

WWW Signal

Estimated using VBFNLO + Pythia 8.

Electron Charge Mis-Identification

- Electrons' charge can be mis-identified because of bremsstrahlung.
- Evaluate the mis-identified rate as a function of Pt and η using two methods.
 - Truth: Compared reconstructed electrons to truth electrons.
 - Likelihood method:
 - Count the number of events in data around Z->ee peak with same sign pairs, Nss, and the total number N.
 - Using Poisson probability to construct log-likelihood distribution.

$$\succ lnL = \sum_{i,j=1} \{ N_{ss}^{i,j} \ln \left[N^{i,j} \left(\varepsilon_i + \varepsilon_j \right) \right] - N^{i,j} \left(\varepsilon_i + \varepsilon_j \right) \}$$

- Maximize log-likelihood to extract rates.
- Then use the data-driven rates to reweight di-boson MC in OSFOS region.
- Background subtraction performed using template fit.
 - Perform background subtraction for both Nss and N.
- Get a set of new rates without background contamination.
 - The difference with raw rate is treated as systematic.

Blue is fit. Red is Signal. Orange is polynomial function. Black is data.

Electron Charge Mis-Identification

- Use rates measured from data with likelihood method as central values.
- Difference between truth and likelihood methods in MC used as systematic along with effect of background subtraction in data.
- > MC Truth rate is compatible with MC likelihood rate which means likelihood method is implemented correctly.

Fake Lepton Background

- Using Generalized Matrix Method to estimate any number of fake leptons.
- Adapted from estimation in SUSY analysis: ATL-COM-PHYS-2013-887
- Backgrounds can be split into two categories: Real and Fake.

Fake Rate =
$$\frac{\# \text{ Tight probes in data - } \# \text{ Tight probes in real lepton MC}}{\# \text{All probes in data - } \# \text{All probes in real lepton MC}}$$
Real Rate = $\frac{\# \text{ Tight probes in data}}{\# \text{All probes in data}}$

> Rates are determined in control regions using tag and probe method enriched in either real or fake probe leptons.

Estimates at Pre-selection

From left to right: Minimum lepton Pt, MET and signal regions.

- SFOS: same flavor opposite sign lepton pair
- Backgrounds are well modeled.

	0 SFOS	1 SFOS	2 SFOS			
Des estantion	Exactly 3 leptons with $P_T > 20 \text{ GeV}$					
Pre-selection	where at least one is trigger matched. (See Section 6.1)					
b-tagged Jet Veto		$N_{b-jet} = 0$ (85 % b-tagging efficiency)				
Same-Flavor Mass	$m_{\rm SF} > 20 { m GeV}$					
Z-Veto	m - m > 15 GeV	No m _{SFOS} with	$ m_{-} - m_{-} > 20 \text{ GeV}$			
$(m_Z = 91.1876 \text{ GeV})$	$ m_{ee} - m_Z > 15 \text{ GeV}$	$m_Z - 35 \text{GeV} < m_{\text{SFOS}} < m_Z + 20 \text{ GeV}$	$ m_{\rm SFOS} - m_Z > 20 {\rm GeV}$			
Missing E_T		$E_T^{Miss} > 45 \text{ GeV}$	$E_T^{Miss} > 55 \text{ GeV}$			
Lepton-Missing E_T Angle	$ \phi(3l) - \phi(E_T^{Miss}) > 2.5$					
Inclusive Jet veto	$N_{jet} \le 1$					

Table 15: Optimized signal selection split by number of Same-Flavor Opposite-Sign (SFOS) lepton pairs.

WWW Combination

Full Leptonic+Semi Leptonic

- ➤ There is another WWW analysis with 2l2j final state.
- Two analyses are now combined for cross section measurement and aQGC study.
- Now there are two separate internal notes for both analyses and also a combined note:
 - Semi leptonic internal note
 - ATL-COM-PHYS-2015-1374
 - https://cds.cern.ch/record/2022894
 - Combined internal note
 - ➤ ATL-COM-PHYS-2015-500
 - https://cds.cern.ch/record/2093523
- Will show the combined cross section measurement and the aQGC limits extraction.
- WWW combination:
 - Much of the treatment between the two analyses is similar.
 - Unify the systematics treatment.
 - Combine the channels of both analyses.

WWW Cross Section Measurement

- The discovery significance is tested using frequentist statistics to estimate the degree of compatibility with the background only hypothesis.
- The measurement and uncertainty are evaluated by using the shape of the profile likelihood ratio which is a function of the data and the signal strength.
- Combine the channels of both analyses to get the best possible measurement.
 - Full leptonic+Semi leptonic
- Observed total cross section is:
 227.66⁺²⁰¹₋₁₉₈(Stat.)⁺¹⁵⁵₋₁₆₀(Syst.)fb
 Expected total cross section is:
 - > $241.47^{+232}_{-199}(Stat.)^{+152}_{-153}(Syst.)fb$

Anomalous Quartic Gauge Couplings

- Seek limits on the following dimension-8 operators in an effective field theory:
- Use TGClim to calculate the limits.
 - Calculate expected and observed limits.
- First set of non-unitarized combined limits are shown below:

	WWW(Combined)		
	fs0/A ⁴ [10 ³ TeV ⁻⁴]	fs1/A ⁴ [10 ³ TeV ⁻⁴]	
Expected limits	[-2.527,2.540]	[-3.655,3.850]	
Observed limits	[-1.9710,1.9533]	[-2.7973,3.0289]	

Unitarized limits now under study.

$$\mathcal{L}_{S,0} = \frac{f_0}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D_\nu \Phi \right] \times \left[(D^\mu \Phi)^{\dagger} D^\nu \Phi \right]$$
$$\mathcal{L}_{S,1} = \frac{f_1}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D^\mu \Phi \right] \times \left[(D_\nu \Phi)^{\dagger} D^\nu \Phi \right]$$

Conclusion and Future

- > My contribution in this analysis:
 - Measurement of electron charge misID rate which has been finished.
 - aQGC limit extraction now on the way.
- Status of this analysis:
 - Already have 4 Editorial Board meetings.
 - SM approval on 10th Dec.
 - Looking forward for closure after Chrismas.
- Plan for Run II:
 - Plan to join the HWW group and work on 3-lepton channel.
 - > Now getting started with HWW framework.

Object Selection of full leptonic channel

Electrons:

- (author is 1 or 3) and Tight++
- ➢ PT > 10 GeV § |η| < 1.37 or 1.52 < |η| < 2.47</p>
- I ETcone20/ET < 0.10 for pT > 20GeV
- I ETcone20/ET < 0.07 for pT < 20GeV</p>
- I pTcone20/pT < 0.04</p>
- ➤ |d0/sigma d0| < 3.0</p>
- ➢ |z0/sigma z0| < 0.5mm</p>
- > No duplicate μ or e within $\Delta R < 0.1$

> Jets:

- Anti-kT 4 LC Topo Jets
- ➢ PT > 25 GeV
- ▶ |η|<4.5</p>
- > JVF > 0.5 for jets with $|\eta| < 2.4$ and PT < 50GeV
- > No duplicate μ or e within $\Delta R < 0.2$

Muons:

- Tight STACO Combined
- ➢ PT > 10 GeV
- ▶ |η| < 2.5</p>
- MCP ID Hits selection
- I ETcone20/ET < 0.10 for pT > 20GeV
- I ETcone20/ET < 0.07 for pT < 20GeV</p>
- I pTcone20/pT < 0.04</p>
- ➤ |d0/sigma d0| < 3.0</p>
- ➢ |z0/sigma z0| < 0.5mm</p>
- > No duplicate e within $\Delta R < 0.1$

Backgrounds at Pre-selection of III

	eee	eeµ	εμμ	μμμ
WZ	240.85 ± 0.67	339.17 ± 0.82	422.07 ± 0.87	567.0 ± 1
ZZ	60.21 ± 0.13	54.1 ± 0.2	118.60 ± 0.31	91.48 ± 0.17
Ζγ	70.1 ± 2.7	0.47 ± 0.22	149.4 ± 3.9	0.17 ± 0.12
ZWW + ZZZ	0.436 ± 0.019	0.834 ± 0.027	1.00 ± 0.03	0.864 ± 0.028
$t\bar{t} + V$	4.854 ± 0.044	9.549 ± 0.064	12.047 ± 0.072	10.510 ± 0.066
Fake (data-driven)	45.1 ± 2.2	37.8 ± 1.6	112.7 ± 2.8	42.5 ± 1.2
WWW	0.784 ± 0.011	3.077 ± 0.023	4.041 ± 0.026	1.876 ± 0.018
Expected Background	421.6 ± 3.5	441.9 ± 1.8	815.8 ± 4.9	712.5 ± 1.6
Expected Signal + Background	422.4 ± 3.6	445.0 ± 1.8	819.8 ± 4.9	714.4 ± 1.6
Observed Data	426 ± 21	468 ± 22	821 ± 29	757 ± 28

Table 39: Expected and observed event yields binned by lepton flavor combination at event pre-selection. Only statistical uncertainties are shown.

Fiducial cross section for full leptonic channel

	0 SFOS	1 SFOS	2 SFOS			
All		All				
Tau Veto		$N_{\tau} < 1$				
Fiducial Leptons	Ex	Exactly 3 leptons with $p_T > 20$ GeV and $ \eta < 2.5$				
Lepton Overlap Removal	$\Delta R(\ell\ell) > 0.1$					
Same-Flavor Mass	$m_{\rm SF} > 20 { m GeV}$					
Z-Veto	m - m > 15 GeV	No $m_{\rm SFOS}$ with	$ m_{max} - m_{m} > 20 \text{ GeV}$			
$(m_Z = 91.1876 \text{ GeV})$	$ m_{ee} - m_Z > 15 \text{ GeV}$	$m_Z - 35 \text{GeV} < m_{\text{SFOS}} < m_Z + 20 \text{ GeV}$	$ m_{\rm SFOS} - m_Z > 20$ GeV			
Missing E_T		$E_T^{Miss} > 45 \text{ GeV}$	$E_T^{Miss} > 55 \text{ GeV}$			
Lepton-Missing E_T Angle	$ \phi(3l) - \phi(E_T^{Miss}) > 2.5$					
Inclusive Jet veto	$N_{jet} \le 1$ with fiducial jets of $p_T > 25$ GeV and $ \eta < 4.5$					

Table 16: Fiducial regions based on optimized selection.

Sample	Fiducial Cross-section [fb]				
	0 SFOS 1 SFOS		2 SFOS	All	
$W^+W^-W^+$	0.0384 ± 0.0029	0.0374 ± 0.0028	0.0141 ± 0.0019	0.0900 ± 0.0048	
$W^-W^+W^-$	0.0212 ± 0.0025	0.0199 ± 0.0025	0.0065 ± 0.0015	0.0476 ± 0.0043	
$W^+H \rightarrow W^+W^+W^-(*)$	0.0414 ± 0.0016	0.0521 ± 0.0018	0.01791 ± 0.00095	0.1114 ± 0.0029	
$W^-H \to W^-W^+W^-(*)$	0.02261 ± 0.00085	0.02740 ± 0.00093	0.01028 ± 0.00054	0.0603 ± 0.0015	
Sum	0.1236 ± 0.0047	0.1369 ± 0.0047	0.0488 ± 0.0029	0.3092 ± 0.0072	

Table 17: Fiducial cross-sections for NLO MADGRAPH samples with CT10 NLO pdfs calculated in the three different signal regions and for the sum of all three signal regions. Cross-sections are shown separately for the different charge modes and for resonant and non-resonant production along with their sum.

Signal Regions

Yields after full selection for 0,1,2 SFOS regions.

Fiducial cross section for semi leptonic channel

Cut Name	Details
Tau Veto	Remove any events associated with Tau's
Lepton Selection	At least 2 leptons with $P_T > 15 \text{ GeV}$
Jet Selection	At least 2 jets with $P_T > 15 \text{ GeV}$
Same-sign Leptons	Leptons must have the same electric charge
Final Lepton Selection	Exactly Two leptons with $P_T > 30$ GeV, $ \eta < 2.5$
$\Delta R_{\ell\ell}$	$\Delta R_{\ell\ell} > 0.1$ to remove any possible faulty lepton containers
$M_{\ell\ell}$	$M_{\ell\ell} > 40 \text{ GeV}$
Z Veto	$ M_{ee} - M_Z < 20 \text{ GeV} \text{ (only for the } ee \text{ channel)}$
Final Jet Selection	Leading(Sub) jet $P_T > 30$ (20) GeV and $ \eta < 2.5$
$\Delta R_{\ell j}$	$\min \Delta R_{\ell j} > 0.3$
MET	MET > 55 GeV (Not applied for the $\mu\mu$ channel)
<i>b</i> -jet Veto	Remove any events that contain any <i>b</i> -tagged jets
ΔR_{jj}	$\Delta R_{jj} < 1.5$ to make sure that the two jets come from the W boson decay
W mass window cut	Two leading jets should have 65 GeV $< M_{jj} < 105$ GeV
jet-jet rapidity	$ \Delta y(jj) < 1.5$

Table 4: Description of fiducial selection for each of the semi-leptonic channels.

	Channel	Fiducial Cross-section [ab]		
	0 SFOS	123.6 ± 4.7		
Fully-leptonic	1 SFOS	136.9 ± 4.7		
	2 SFOS	48.8 ± 2.9		
	ee	50.4 ± 2.5		
Semi-leptonic	eµ	125.2 ± 3.8		
	$\mu\mu$	129.9 ± 3.9		

Fake Lepton Background

- Using Generalized Matrix Method to estimate any number of fake leptons.
- Adapted from estimation in SUSY analysis: ATL-COM-PHYS-2013-887
- Backgrounds can be split into two categories: Real and Fake.

Fake Rate = $\frac{\# \text{ Tight probes in data - } \# \text{ Tight probes in real lepton MC}}{\# \text{All probes in data - } \# \text{All probes in real lepton MC}}$ Real Rate = $\frac{\# \text{ Tight probes in data}}{\# \text{All probes in data}}$

> Rates are determined in control regions using tag and probe method enriched in either real or fake probe leptons.

	Electrons	Muons	Fake R	ate Dilepton Control Regions	Real Ra	ate Dilepton Control Regions
	Central electrons (author is 1 or 3) $P_T > 10 \text{ GeV}$ $ \eta < 1.37 \text{ or } 1.52 < \eta < 2.47$ Medium++ Object quality flag	Tight STACO Combined P _T > 10 GeV η < 2.5 MCP ID Hits selection d ₀ /sigma d ₀ < 3.0	Event Selection Electron CR	 Single lepton trigger Exactly 2 Loose leptons Both leptons required to have same sign MET > 10 GeV 	Event Selection	 Single lepton trigger At least 1 Loose SFOS pair inside Z-window of m-90 GeV < 15 GeV
Loose	d ₀ /sigma d ₀ < 3.0 z ₀ sin(θ) < 0.5 mm	$ z_0 \sin(\theta) < 0.5 \text{ mm}$		Tag : Tight µ that is trigger matched. P _T > 40 GeV Probe : Loose e	Ele <mark>ctron</mark> CR	Tag: Tight e that is Trigger Matched Probe: Loose e
Tight	$P_{T} \text{ cone } 20 / P_{T} < 0.04$ $E_{T} \text{ cone } 20 / E_{T} < 0.07 \text{ if } P_{T} < 20 \text{ GeV}$ $E_{T} \text{ cone } 20 / E_{T} < 0.10 \text{ if } P_{T} > 20 \text{ GeV}$	E_{T} cone 20 / E_{T} < 0.07 if P_{T} < 20 GeV E_{T} cone 20 / E_{T} < 0.10 if P_{T} > 20 GeV	Muon CR	Tag : Tight μ that is trigger matched. P _T > 40 GeV Probe : Loose μ	Muon CR	Tag : Tight μ that is trigger matched Probe : Loose μ

Real and Fake Rate

Final real rates are evaluated in both data and in MC.
The difference is taken as a systematic.

- The final fake rates are evaluated along with some systematic variations:
 - Composition: Change b-jet selection in control regions
 - Correlated: Scale Real and MC estimates by +/- 20%
 - Uncorrelated: Vary Pt and MET cuts

