

Electron identification and search for SUSY with same sign leptons using 2015 ATLAS data

CPPM PhD seminar Sébastien Kahn supervisor : Fabrice Hubaut

LHC Run 2 Discovery potential

- Run-1 (2010-2012) : Higgs discovery but no sign for physics
- Run-2 (2015) : p-p collision center-of-mass energy rise from 8 to 13 TeV
 → Large production cross-section increase for heavy particles

PhD work driven by Run-2 discovery potential Part 1 : optimization of the electron identification for run 2 Part 2 : search for SUSY with same sign lepton final state

11/12/15

Identifying electrons with the ATLAS detector

• Electrons provides a clear experimental signature and are involved in a wide variety of physical processes

Electron identification is crucial for many physics analyses

Motivation of the electron identification optimization

- 3 working points designed in Run-1 to suit physics analysis needs
- Performances of the Run-1 identification menus in high pile-up regime

<number of interaction per bunch crossing> (<µ>)

Limitations of the Run-1 menus

- Efficiency loss with pile-up
 → higher efficiency needed
- Energy and luminosity increase
 - → Trigger rate multiplied by 4-5
 - → Better background rejection needed to keep a low ~25 GeV energy thresholds

The 2012 identification menus have to be re-optimized for Run-2 high luminosity conditions

Performances of the optimized identification menus

- Two identification techniques used : likelihood (default) and cut-based (back-up)
- Performance of the cut-based identification menus

More detail on the the optimisation method given in last year seminar at CPPM : link

- Better performances at high pile-up
- Tight enough identification menus to define triggers with low energy thresholds

The optimized menus have been used for online and offline ATLAS software with the whole 2015 data

Introduction Supersymmetry (SUSY)

- Space-time symmetry group generated by spin 1 rotations
- Possibility to generate a space-time symmetry group with spin ½ rotations

SUSY : generalisation of the space-time symmetry

- Strength of the theory
 - Dark matter candidate (LSP)
 - Electro-weak and strong unification
 - Convergent Higgs mass without fine tuning (naturalness)
 - → If so, the mass of the of the 3rd generation quarks and the gluon super-partners expected at the TeV scale

If natural SUSY, 3rd generation quark and gluon super-partners can be discovered with 2015 data

Introduction same sign lepton final state

- Prompt same sign leptons Standard Model production is rare : VV, ttV, tttt
- SUSY processes can easily produce same sign leptons
 - SUSY particle are heavy (TeV scale) \rightarrow Complex decay chains
 - Gluino (gluon superpartner) is a majorana fermion
- The low SM contamination allow to relax the kinematic constraints
 - \rightarrow A wide variety of processes can be studied covering different production modes
 - \rightarrow Good sensitivity to compressed SUSY mass spectra
 - $\rightarrow\,$ Complementarity with other SUSY searches

7

Analysis backgrounds

- Two different kind of backgrounds contributions :
 - SM prompt Same sign processes : VV, ttV
 - → Estimated fully using MC simulations
 - \rightarrow MC estimations checked on data using dedicated Validation Regions (VR)
 - Detector background : Fake lepton and electron charge flip
 - → Estimated using data driven method
- Key background : fake prompt lepton
 - **Definition :** heavy flavour / photon conversions / hadrons faking electrons
 - Mainly arises from : semi leptonic tt events

CPPM group responsible of the fake lepton background estimation Key point of the analysis

h

Fake background estimation

• Estimated using loose to tight (signal requirement) lepton selections

Estimated background

Measured in the signal Regions

- The two main inputs are measured in data :
 Fake lepton lepton efficiencies (rate) : ζ = (N_{Loose}/N_{Tight})_{Fake leptons}
 - Real lepton efficiencies : $\epsilon = (N_{Loose}/N_{Tight})_{Real leptons}$
- Real lepton efficiencies measured with a Z tag-and-proble method
 - A tag lepton, used to identify the Z → II event have to pass tight identification cuts
 - A probe lepton, used for the efficiencies measurements has to pass loose identification cuts

Real lepton efficiencies Z tag-and-probe Results

• Final Z tag-and-probe efficiencies measurements in data using the full 2015 Data

A data to Monte Carlo agreement within o(1-2%)

Real lepton efficiencies measurement systematics

• Motivation :

- SUSY signal event topologies very different from the Z+jets ones measurement.
- Tight isolation cuts \rightarrow important topology dependency of the lepton efficiencies.

A Z+jets to signal topology extrapolation systematic is necessary to take into account these differences.

Estimation method

Ratio between Z+jets efficiencies and SUSY signal with 4 boosted tops in the final state (conservative choice)

- → around 5% systematic uncertainty at high p_T
- Alternative lepton efficiency measurement method using tt events developed

method used when more data available

CPPM PhD day

SUSY Same sign lepton Analysis summary

- Prompt same sign and detector backgrounds estimates checked with dedicated Validation Regions
- The 4 following SR are probed and first discovery / exclusion plots are under finalisation

SR categorisation based on (b-)jet multiplicity

Signal region	Nlept	N_{bjets}^{20}	$N_{\rm jets}^{50}$	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff} [{\rm GeV}]$
SR3b	≥2	≥3	-	>125	>650
SR1b	≥2	≥1	≥4	>150	>550
SR0b5j	≥2	=0	≥5	>125	>650
SR0b3j	≥3	=0	≥3	>200	>550

Public results will be released next Tuesday

Conclusions

I/ Electron identification

 Run-2 cut-based electron identification menus optimized and use by the ATLAS community for the 2015 data.

II/ search for strongly produced SUSY with same sign lepton

- First results will released with the 2015 run 2 data next Tuesday
- Fist SUSY results with the full 2015 data
- Paper to be finalized and submitted in January

Back-up Part I : Electron identification

Importance of the leptons for LHC physics

How to detect electron using the ATLAS detectors

Muon Detectors

Tile Calorimeter

Liquid Argon Calorimeter

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

 Using the showering process :

-> Calorimeters

- Stops the electrons and Measure their energy
- Give **shower shape** information
- Using the track :
 -> Inner Tracker
 - Reconstruct the **track** of the electron
 - Measure the charge
 - Identify the primary vertex
- Using the transition radiation
 - -> TRT tracker
 - Additionnal e / π discrimination

The ATLAS detector gives a large panel of information to identify electrons

11/12/15

The electromagnetic calorimeter

^{11/12/1} Large granularity, with transverse and longitudinal segmentation -> Very useful for electron identification

17

Electron reconstruction

 Step 1 : Identification of energy clusters

in the electromagnetic calorimeter in a fixed $\Delta \Phi$ and $\Delta \eta$ window (in red)

- Step 2 : Association of a track with the cluster
 - found track :
 - -> electron
 - No track found
 -> photon
 - Step 3 : Computation od the final physical parameters

ex: 4 momentum / charge etc ...

Hadrons are ~10⁶ more abudant that electron in LHC.
 Not enough rejection with the reconstruction

Further discrimination is needed -> electron identification

Optimization method

- We need to use high pile-up Monte Carlo samples :
 - Electron signal : Zee at $<\mu> = 0/20/40/60/80$ and Bs = 25 ns
 - **Background sample** : JF17 at $<\mu>$ = 0 / 20 / 40 / 60 / 80 and Bs = 25 ns
- However, important shower shapes mis-modeling seen in Run 1 :
 - Data → Monte Carlo shifting computed with 2012 data applied (See ref n°2, slide 11)
 - Loosen some potentially problematic cuts
- The cuts are optimized using an algorithm that uses :
 - The TMVA Cuts method
 - Further manual tuning
- This optimization has been performed for :
 - 10 η bins ($|\eta| < 2.47$)
 - 7 Et bins (Et > 20 GeV)

After one year of work to develop the tools, extract and test the menus, we propose the following re-optimized menus

Electron identification

- Use different discriminating variables to reach further discrimination from background
- Wide variety of analysis in ATLAS

-> Worse performances

- Some are limited by statistics
 -> high signal efficiency is needed
- Some are limited by the fakes electrons
 -> high background rejection is needed
- To better cope with needs of the analysis 3 identification criterion are defined :
 -> Loose / Medium / Tight
- 2 different strategy :

• In 2015 the LHC will produce collision at higher energy / luminosity

Is the 2012 cut-based menu adapted for run 2 high luminosity configuration ?

11/12/15

Electron Identification variables Summary

• Here is a small presentation of the calorimeter based electron identification discriminating variables :

ID menus cut contents

Loose menu

Used variables : **Shower shape :** Eratio / ωstot / ωη2 / Rη / Rhad(1) **track-cluster matching :** Δη **track quality :** nSi / nPix / **nBlayer**

Medium menu

Used variables: **Shower shape :** Eratio / ωstot / ωη2 / Rη / **RΦ** / f3 / Rhad(1) **TRT** : F HT **track-cluster matching :** Δη **track quality :** nSi / nPix / nBlayer

Main changes :

- Rhad is looser
- F HT is now tighter and binned in Et
- Eratio is tigher for Et[20-30] GeV
- +1 on the nSi / nPix cuts
- d0 reasonably tighten

Tight menu

Used variables : **Shower shape :** Eratio / ωstot / ωη2 / Rη / **RΦ** / f3 / Rhad(1) **track-cluster matching :** Δη / **ΔΦ** / E/p TRT : F HT / nTRT **track quality :** nSi / nPix / nBlayer Green : New cuts with respect to 2012 isEM++ menus
Red : Offline only cuts

Why re-optimizing The electron identification

• Here are the offline performances of the 2012 identification menu :

11/12/15 The 2012 identification menus needs to be re-optimized for 2015 high luminosity conditions

Are our menus degrading the physical content ?

• Invariant mass of electron pairs coming from a Z -> ee process

Are our menus adapted for new physics searches ?

- New physics searches are crutial for the begining of the 2015 data taking
- Many new physics signals are tagged with very high Energy leptons
 We want to keep high efficiency for TeV electrons

Back-up Part II : search for SUSY with 2 same sign leptons

Introduction **Run1 Signal Regions (SR)**

- Five exclusive SR categorized using
 - b-jet multiplicity
 - 2 same sign leptons or 3 leptons

- m_{eff} cut → discovery
- m_{eff} fit \rightarrow exclusions ν/ℓ W $2/\nu$ Signal region Requirement SR3Lhigh SR3b SR0b SR1b SR3Llow SS or 3LSSSS3L3LLeptons ≥ 3 > 1 $N_{b-\text{iet}}$ =0- $N_{\rm iet} \geq$ 5 3 3 4 4 Not Etmiss cut $E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV] $50 < E_{\rm T}^{\rm miss} < 150$ > 150> 150> 150 $m_{\rm T} \, [{\rm GeV}] >$ 100_ Veto SR3b Z boson, SR3b SR3b -_ $m_{\rm eff} \, [{\rm GeV}] >$ 700350400400400

 \rightarrow can be used to constrain **RPV** models

11/12/15

The run 1 signal regions allowed to cover efficiently a large variety of SUSY models

27

Introduction **Run1 Results (SR)**

- No discovery so far : Strong SUSY searches summary paper link •
- **Chosen Run 1 exclusion plots :** Same sign lepton run 1 paper link

Real lepton efficiencies Description

 Real lepton efficiency corresponds to the baseline (pre-selected) to signal leptons efficiencies

Real lepton efficiencies ttbar tag-and-probe

• Large b-jet multiplicity in SR1-3b

→ topologies closer to ttbar than Z+jets → a ttbar tag-and-probe method has been developed to reduce the extrapolation systematics

Event selection

- Exactly 2 leptons with p_T > 30 GeV
 → Rejection against W+jets / ttZ
- A least 1 b-jet
 → Rejection against W+jets / VV
- E^T_{miss} > 30 and GeV for ee/µµ events
 → Rejection against Z+jets
- Events with 70 < $m_{\scriptscriptstyle \parallel}$ < 100 GeV removed for ee/µµ events
 - → Rejection against Z+jets / ttV

- Lepton selection
 - tag lepton, used to identify the ttbar event, has to pass :
 - Signal lepton definitions cuts
 - Single lepton trigger match
 - A probe lepton, used for the efficiencies measurements has to pass :
 - Baseline lepton definition cuts

Closer to SUSY signal efficiencies (smaller systematics) expected with ttbar T&P