Search for new physics with the LHCb detector at CPPM

Morgan MARTIN

with Olivier LEROY (director) and Simon AKAR

CPPM PhD Day

December 4, 2015

Outline

LHCb overview

- Physics at LHCb
- The LHCb detector at the LHC
- Search for New Physics
 - Selected LHCb results
 - Rare decays
 - Mixing induced CP violation in B_s^0 (ϕ_s)

2 Analysis of $B_s^0 \rightarrow \eta_c \phi$ decays

- Motivations
- Events selection
- Fit models
- Preliminary results

Physics at LHCb

- LHCb is the LHC experiment dedicated to beauty and charm hadrons.
 - Compare precision measurements with clean predictions to find evidence for NP
 - Flavor sector:
 - very rich sector of the SM with precise theoretical predictions
 - loop processes are sensitive to energy scales well beyond those of the accelerators, thanks to virtual contributions.

Physics at LHCb

- LHCb is the LHC experiment dedicated to beauty and charm hadrons.
 - Compare precision measurements with clean predictions to find evidence for NP
 - Flavor sector:
 - very rich sector of the SM with precise theoretical predictions
 - loop processes are sensitive to energy scales well beyond those of the accelerators, thanks to virtual contributions.

- Wide physics program:
 - CKM and CP violation with b and c hadrons
 - Rare decays of b and c hadrons
 - Spectroscopy in pp interactions and B decays
 - Electroweak and QCD measurements in the forward region
 - Heavy quark production
 - Exotica searches, ...

LHCb: super *b* and *c* factory at the LHC

• LHC is a proton-proton collider: runl: $\sqrt{s} = 7 \text{ TeV}$ (2011), 8 TeV (2012) runll: $\sqrt{s} = 13 \text{ TeV}$ (2015–2018)

LHCb: super *b* and *c* factory at the LHC

- LHC is a proton-proton collider: runl: $\sqrt{s} = 7 \text{ TeV}$ (2011), 8 TeV (2012) runll: $\sqrt{s} = 13 \text{ TeV}$ (2015–2018)
- Large $b\bar{b}$ production cross-section: $\sigma(pp \rightarrow b\bar{b}) = 286 \mu b$ at 7 TeV [PLB 694 (2010) 209]
- $\sigma(pp \rightarrow c\bar{c})$ 20 times larger!
- All kinds of *b*-hadrons produced $(B^+, B^0, B_s^0, B_c^+, b$ -baryons, ...)

LHCb: super *b* and *c* factory at the LHC

- LHC is a proton-proton collider: runl: $\sqrt{s} = 7 \text{ TeV}$ (2011), 8 TeV (2012) runll: $\sqrt{s} = 13 \text{ TeV}$ (2015–2018)
- Large $b\bar{b}$ production cross-section: $\sigma(pp \rightarrow b\bar{b}) = 286\mu b$ at 7 TeV [PLB 694 (2010) 209]
- $\sigma(pp \rightarrow c\bar{c})$ 20 times larger!
- All kinds of *b*-hadrons produced (*B*⁺, *B*⁰, *B*⁰_s, *B*⁺_c, *b*-baryons, ...)

The LHCb detector [JINST 3 (2008 508005)]

- Single-arm forward spectrometer:
 - Tracking system
 - IP resolution $\sim 15 \mu m$ (at high p_T) $\delta p/p \sim 0.45\%$
 - RICH system

Very good ${\cal K}-\pi$ identification for $p\sim 2-100~{
m GeV}/c$

Calorimeters

Energy measurement, identify π_0, γ, e

- + trigger
- Muon detector

muon identification + trigger

The LHCb detector [JINST 3 (2008 S08005)]

- Single-arm forward spectrometer:
 - Tracking system
 - IP resolution $\sim 15 \mu m$ (at high p_T) $\delta p/p \sim 0.45\%$
 - RICH system

Very good $K - \pi$ identification for $p \sim 2 - 100 \text{ GeV}/c$

Calorimeters

Energy measurement, identify π_{0}, γ, e

- + trigger
- Muon detector

muon identification + trigger

• Integrated luminosity: runl: 1 fb⁻¹ (2011), 2 fb⁻¹ (2012) runll (ongoing): 0.3 fb⁻¹ (2015–2018) Instantaneous luminosity $\sim (1 - 4) \times 10^{32} cm^{-2} s^{-1}$

The LHCb detector [JINST 3 (2008 S08005)]

- Single-arm forward spectrometer:
 - Tracking system
 - IP resolution $\sim 15 \mu m$ (at high p_T) $\delta p/p \sim 0.45\%$
 - RICH system

Very good $K - \pi$ identification for $p \sim 2 - 100 \text{ GeV}/c$

Calorimeters

Energy measurement, identify π_0, γ, e

- + trigger
- Muon detector

muon identification + trigger

- Integrated luminosity: runl: 1 fb⁻¹ (2011), 2 fb⁻¹ (2012) runll (ongoing): 0.3 fb⁻¹ (2015–2018) Instantaneous luminosity $\sim (1 - 4) \times 10^{32} cm^{-2} s^{-1}$
- $\bullet\,$ Trigger reduces the pp rate from 40 $\rm MHz \,{\rightarrow}\,$ 12.5 $\rm kHz$ in two steps:
 - 1) hardware (e.g. muon trigger built at CPPM)
 - 2) software

- Wide range of precise and outstanding physics results
- Some tensions with the Standard Model
- Nice and precise measurements not anticipated when designing LHCb

Some key results at LHCb

Rare Decays: $B^0_{s,d} \rightarrow \mu^+ \mu^-$ (at CPPM)

- Loop processes very suppressed in the SM. Precise theoretical prediction [C. Bobeth et al, PRL 112, (2013) 101801]:
- Sensitive to new physics
- Combination with CMS data [Nature 552 (2015) 68]:

Rare Decays: τ in the final state (at CPPM)

Pioneer work in progress

- $B \rightarrow \tau \tau$ and $B \rightarrow K^* \tau \tau$:
 - Rare decay with $\mathcal{B}(B \rightarrow \tau \tau) \sim 200 \times \mathcal{B}(B \rightarrow \mu \mu)$ in the SM
 - Experimentally very challenging
- $B \rightarrow \tau \mu$:
 - Lepton flavor violation

Mixing induced CPV in B_s^0 (at CPPM)

• Interference between B_s^0 decay to CP eigenstate either directly or via $B_s^0 - \overline{B}_s^0$ oscillation gives rise to a CP violating phase $\phi_s^{J/\psi\phi} \equiv \phi_s = \Phi_M - 2\Phi_D$: golden mode: $B_s^0 \rightarrow J/\psi\phi$

Mixing induced CPV in B_s^0 (at CPPM)

• Interference between B_s^0 decay to CP eigenstate either directly or via $B_s^0 - \overline{B}_s^0$ oscillation gives rise to a CP violating phase $\phi_s^{J/\psi\phi} \equiv \phi_s = \Phi_M - 2\Phi_D$: golden mode: $B_s^0 \rightarrow J/\psi\phi$

- Small and precise SM prediction: $\phi_s \simeq -2\beta_s = -(0.0376 + 0.0007 - 0.0008) \text{ rad}$ with $\beta_s = \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$
- Sensitive to NP in the mixing loop

Measured by fitting differential decay rates for B⁰_s and B⁰_s

Mixing-induced CPV in B_s^0 [arXiv:1411.3104]

- LHCb using only $B_s^0 \rightarrow J/\psi K^+ K^-$: $\phi_s = -0.058 \pm 0.049 \pm 0.006 \text{ rad}$
- World average: $\phi_s = -0.015 \pm 0.035 \, \text{rad}$

Analysis of $B_s^0 \rightarrow \eta_c \phi$ decays with the runl of LHCb

- Goal:
 - reduce the statistical uncertainty on ϕ_s
 - \Rightarrow add a new decay mode
- $\mathcal{B}(B_s^0 \to J/\psi \ (\mu^+\mu^-) \ \phi \ (KK)) \simeq 3.2 \times 10^{-5}$ $\mathcal{B}(B_s^0 \to \eta_c \ (4h) \ \phi \ (KK)) \simeq 2.3 \times 10^{-5} \ (\text{estimate})$ $\Rightarrow \text{ similar visible BR}$
 - study hadron modes: $h = \pi$ or K $\mathcal{B}(\eta_c \to K^+ K^- \pi^+ \pi^-) / \mathcal{B}(\eta_c(4h)) \sim 53\%$ $\mathcal{B}(\eta_c \to \pi^+ \pi^- \pi^+ \pi^-) / \mathcal{B}(\eta_c(4h)) \sim 40\%$ $\mathcal{B}(\eta_c \to K^+ K^- K^+ K^-) / \mathcal{B}(\eta_c(4h)) \sim 7\%$
- $N_S = \mathcal{L}_{int} \times \sigma_{b\overline{b}} \times f_{B_s^0} \times 2 \times \mathcal{B}(B_s^0 \to \eta_c(4h)\phi(KK)) \times \epsilon_{tot}$ First estimation of sensitivity on ϕ_s with a MC based study (2006): $\sigma_{\phi_s}^{\eta_c \phi} \sim 0.1 \sigma_{\phi_s}^{J/\psi \phi}$

- Goal:
 - reduce the statistical uncertainty on ϕ_s
 - \Rightarrow add a new decay mode
- $\mathcal{B}(B_s^0 \to J/\psi \ (\mu^+\mu^-) \ \phi \ (KK)) \simeq 3.2 \times 10^{-5}$ $\mathcal{B}(B_s^0 \to \eta_c \ (4h) \ \phi \ (KK)) \simeq 2.3 \times 10^{-5} \ (\text{estimate})$ $\Rightarrow \text{ similar visible BR}$
 - study hadron modes: $h = \pi$ or K $\mathcal{B}(\eta_c \to K^+ K^- \pi^+ \pi^-) / \mathcal{B}(\eta_c(4h)) \sim 53\%$ $\mathcal{B}(\eta_c \to \pi^+ \pi^- \pi^+ \pi^-) / \mathcal{B}(\eta_c(4h)) \sim 40\%$ $\mathcal{B}(\eta_c \to K^+ K^- K^+ K^-) / \mathcal{B}(\eta_c(4h)) \sim 7\%$
- $N_S = \mathcal{L}_{int} \times \sigma_{b\overline{b}} \times f_{B_s^0} \times 2 \times \mathcal{B}(B_s^0 \to \eta_c(4h)\phi(KK)) \times \epsilon_{tot}$ First estimation of sensitivity on ϕ_s with a MC based study (2006): $\sigma_{\phi_s}^{\eta_c \phi} \sim 0.1 \sigma_{\phi_s}^{J/\psi \phi}$
- First step: Discovery of $B_s^0 \rightarrow \eta_c \phi$ and measurement of its branching fraction with the runl of LHCb (3 fb⁻¹)

$$\mathcal{B}_{meas}^{i}(B_{s}^{0} \to \eta_{c}\phi) = \frac{N_{B_{s}^{0} \to \eta_{c}\phi}^{i}}{N_{B_{s}^{0} \to J/\psi \phi}^{i}} \times \mathcal{B}(B_{s}^{0} \to J/\psi \phi) \times \frac{\mathcal{B}^{i}(J/\psi \to 4h)}{\mathcal{B}^{i}(\eta_{c} \to 4h)} \times \frac{\varepsilon_{B_{s}^{0} \to J/\psi \phi}^{i}}{\varepsilon_{B_{s}^{0} \to \eta_{c}\phi}^{i}}$$

with $i \in \{2K2\pi, 4\pi, 4K\}$

$$\mathcal{B}_{meas}^{i}(B_{s}^{0} \to \eta_{c}\phi) = \frac{N_{B_{s}^{0} \to \eta_{c}\phi}^{i}}{N_{B_{s}^{0} \to J/\psi \phi}^{i}} \times \mathcal{B}(B_{s}^{0} \to J/\psi \phi) \times \frac{\mathcal{B}^{i}(J/\psi \to 4h)}{\mathcal{B}^{i}(\eta_{c} \to 4h)} \times \frac{\varepsilon_{B_{s}^{0} \to J/\psi \phi}^{i}}{\varepsilon_{B_{s}^{0} \to \eta_{c}\phi}^{i}}$$

with $i \in \{2K2\pi, 4\pi, 4K\}$

1) Inputs $\mathcal{B}(B^0_s \to J/\psi \phi)$, $\mathcal{B}^i(J/\psi \to 4h)$ and $\mathcal{B}^i(\eta_c \to 4h)$ taken from PDG

$$\mathcal{B}_{meas}^{i}(B_{s}^{0} \to \eta_{c}\phi) = \frac{N_{B_{s}^{0} \to \eta_{c}\phi}^{i}}{N_{B_{s}^{0} \to J/\psi \phi}^{i}} \times \mathcal{B}(B_{s}^{0} \to J/\psi \phi) \times \frac{\mathcal{B}^{i}(J/\psi \to 4h)}{\mathcal{B}^{i}(\eta_{c} \to 4h)} \times \frac{\varepsilon_{B_{s}^{0} \to J/\psi \phi}^{i}}{\varepsilon_{B_{s}^{0} \to \eta_{c}\phi}^{i}}$$

with $i \in \{2K2\pi, 4\pi, 4K\}$

1) Inputs $\mathcal{B}(B^0_s \to J/\psi \phi)$, $\mathcal{B}^i(J/\psi \to 4h)$ and $\mathcal{B}^i(\eta_c \to 4h)$ taken from PDG

- 2) Efficiencies computed using exclusive η_c and J/ ψ MC
 - We factorize the total efficiency as: $\varepsilon = \varepsilon^{\text{geo}} \cdot \varepsilon^{\text{reco}} \cdot \varepsilon^{\text{sel}} \cdot \varepsilon^{\text{PID}}$

$$\mathcal{B}_{meas}^{i}(B_{s}^{0} \to \eta_{c}\phi) = \frac{N_{B_{s}^{0} \to \eta_{c}\phi}^{i}}{N_{B_{s}^{0} \to J/\psi \phi}^{i}} \times \mathcal{B}(B_{s}^{0} \to J/\psi \phi) \times \frac{\mathcal{B}^{i}(J/\psi \to 4h)}{\mathcal{B}^{i}(\eta_{c} \to 4h)} \times \frac{\varepsilon_{B_{s}^{0} \to J/\psi \phi}^{i}}{\varepsilon_{B_{s}^{0} \to \eta_{c}\phi}^{i}}$$

with $i \in \{2K2\pi, 4\pi, 4K\}$

1) Inputs $\mathcal{B}(B^0_s \to J/\psi \phi)$, $\mathcal{B}^i(J/\psi \to 4h)$ and $\mathcal{B}^i(\eta_c \to 4h)$ taken from PDG

- 2) Efficiencies computed using exclusive η_c and J/ ψ MC
 - We factorize the total efficiency as: $\varepsilon = \varepsilon^{\text{geo}} \cdot \varepsilon^{\text{reco}} \cdot \varepsilon^{\text{sel}} \cdot \varepsilon^{\text{PID}}$
- 3) $\frac{N_{B_{S}^{0} \to \eta_{C}\phi}}{N_{B_{S}^{0} \to J/\psi \phi}}$: extracted from unbinned maximum likelihood fit to data (see following)

- A) A pre-selection is performed in two steps to reduce the combinatorial background:
 - 1) loose cut-based selection
 - 2) Boosted Decision Tree (BDT)

- A) A pre-selection is performed in two steps to reduce the combinatorial background:
 - 1) loose cut-based selection
 - 2) Boosted Decision Tree (BDT)
- B) The final selection is optimized using another BDT together particle identification (PID) cuts

Pre-selection: cut-based

- An LHCb event contains ~100 nearly parallel tracks
- Large part of combinatorial background:
 - has low transverse momentum (p_T)
 - comes from primary vertex (PV)

Pre-selection: cut-based

- An LHCb event contains ~100 nearly parallel tracks
- Large part of combinatorial background:
 - has low transverse momentum (p_T)
 - comes from primary vertex (PV)

Variable	Cut	
Hadrons from no		
$p_T [MeV/c]$	>	250.0
IP/v^2	5	4.0
ProbNNk (Only for kaons)	>	0.13
ProbNNpi (Only for pions)	>	0.2
TRACK χ^2/dof	<	3.0
TRACK GhostProb	<	0.4
ης		
DOCA χ^2	<	20.0
$\Sigma \rho_T (K^+, K^-, \pi^+, \pi^-) [\text{MeV}/c]$	>	2500.0
$\Sigma IP/\chi^2 (K^+, K^-, \pi^+, \pi^-)$	>	30.0
IP/χ^2	>	2.0
$ m_{4h} - 3000.0 [MeV/c^2]$	<	200.0
vertex χ^2/dof	<	9.0
Keene ef 1		
		500.0
P / IP/2	1	4.0
PIDK	\leq	0.0
φ	-	
p _T [MeV/c]	>	800.0
DOCA χ^2	<	30.0
IP/χ^2	>	2.0
$ m_{KK} - m_{\phi} [MeV/c^2]$	<	30.0
vertex χ^2	<	9.0
B_S^0		
$ m_{4hKK} - m_{B_{2}^{0}} [MeV/c^{2}]$	<	500.0
DIRA	>	0.99
vertex χ^2/dof	<	25.0
DLS	>	0.0

Pre-selection: BDT

- BDT trained with:
 - Signal: MC events
 - Background: Real Data Upper Side Band
 - \rightarrow invariant mass of 6 hadrons in [5800, 6000] MeV

Pre-selection: BDT

- BDT trained with:
 - Signal: MC events
 - Background: Real Data Upper Side Band
 - \rightarrow invariant mass of 6 hadrons in [5800, 6000] MeV
- List of variables used:
 - p_T of all particles (but B⁰_s)
 - IP/χ^2 of all particles
 - B⁰_s decay time and vertex fit quality
 - Pointing

BDT response > 0 is used

Offline selection: BDT

BDT trained with:

- Signal: MC TRUE events
- Background: real data Upper Side Band: m(6h) > 5600 MeV
- List of variables used:
 - vertex χ^2 , IP/ χ^2 , TRACK χ^2 , pseudo-rapidity, time of flight, p_T
- BDT training result:

Optimization of the offline selection

• Procedure of optimization: FoM = $\frac{S}{\sqrt{S+B}}$, where $S \equiv$ Number of $B_s^0 \rightarrow 4h\phi$ candidates fitted (Gaussian) $B \equiv$ Number of combinatorial background fitted (Exponential)

- 1) Cut on BDT split by data taking periods and decay modes
- 2) Different PID cut applied according to the final state $B_s^0 \rightarrow \eta_c \phi$ with $\phi \rightarrow KK$ and $\eta_c \rightarrow KK\pi\pi$, $\eta_c \rightarrow \pi\pi\pi\pi$, $\eta_c \rightarrow KKKK$

$$\mathcal{B}_{meas}^{i}(B_{s}^{0} \to \eta_{c}\phi) = \frac{N_{B_{s}^{0} \to \eta_{c}\phi}^{i}}{N_{B_{s}^{0} \to J/\psi\phi}^{i}} \times \mathcal{B}(B_{s}^{0} \to J/\psi\phi) \times \frac{\mathcal{B}^{i}(J/\psi \to 4h)}{\mathcal{B}^{i}(\eta_{c} \to 4h)} \times \frac{\varepsilon_{B_{s}^{0} \to J/\psi\phi}^{i}}{\varepsilon_{B_{s}^{0} \to \eta_{c}\phi}^{i}}$$

with $i \in \{2K2\pi, 4\pi, 4K\}$

• The fit is performed in two steps:

1) 2D fit
$$(m_{4hK^+K^-} \times m_{K^+K^-})$$
:

• to disentangle event category: $B^0 \rightarrow 4h\phi, B^0 \rightarrow 4hKK,$ $B^0_s \rightarrow 4h\phi, B^0_s \rightarrow 4hKK,$ $bkg \rightarrow 4h\phi$ and $bkg \rightarrow 4hKK$

- The fit is performed in two steps:
 - 1) 2D fit $(m_{4hK^+K^-} \times m_{K^+K^-})$:
 - to disentangle event category: $B^0 \rightarrow 4h\phi, B^0 \rightarrow 4hKK,$ $B^0_s \rightarrow 4h\phi, B^0_s \rightarrow 4hKK,$ $bkg \rightarrow 4h\phi$ and $bkg \rightarrow 4hKK$
 - 2) 1D fit (m_{4h}) with optimal backgroung substraction procedure:
 - to disentangle η_c , J/ψ and NR components

$B_s^0 ightarrow \eta_c(4h)\phi(K^+K^-)$: Mass fit model

- Mass 4h*K*⁺*K*⁻:
 - $\rightarrow B_s^0$: Hypathia¹ with μ and σ free and all other parameters fixed (MC)
 - $\rightarrow B^0$: Hypathia with μ free and all other parameters equal to B^0_s
 - \rightarrow Combinatorial background: Exponential with coefficient free

¹Modified Gaussian with asymetric tails
$B_s^0
ightarrow \eta_c(4h)\phi(K^+K^-)$: Mass fit model

- Mass 4h*K*⁺*K*⁻:
 - $\rightarrow B_s^0$: Hypathia¹ with μ and σ free and all other parameters fixed (MC)
 - $\rightarrow B^0$: Hypathia with μ free and all other parameters equal to B^0_s
 - \rightarrow Combinatorial background: Exponential with coefficient free
- Mass 4h
 - $\rightarrow \eta_c$: Voigtian: μ free, Breit-Wigner line shape width fixed to 32.2 MeV and σ of the convoluted Gaussian free
 - $\rightarrow J/\psi$: Hypathia with μ and σ free, all other parameters fixed (MC)
 - \rightarrow "Physical background", NR m(4h): Exponential with coefficient free

¹Modified Gaussian with asymetric tails

 $B_s^0 \rightarrow \eta_c(4h)\phi(K^+K^-)$: Mass fit model

- Mass 4hK⁺K⁻:
 - $\rightarrow B_s^0$: Hypathia¹ with μ and σ free and all other parameters fixed (MC)
 - $\rightarrow B^0$: Hypathia with μ free and all other parameters equal to B^0_s
 - \rightarrow Combinatorial background: Exponential with coefficient free
- Mass 4h
 - $\rightarrow \eta_c$: Voigtian: μ free, Breit-Wigner line shape width fixed to 32.2 MeV and σ of the convoluted Gaussian free
 - $\rightarrow J/\psi$: Hypathia with μ and σ free, all other parameters fixed (MC)
 - \rightarrow "Physical background", NR m(4h): Exponential with coefficient free
- Mass K⁺K⁻
 - → ϕ : Relativistic Breit-Wigner, with mass dependent width, convoluted with Gaussian: μ free, Relativistic Breit-Wigner line shape width fixed to 4.26 MeV and radius fixed to 3.0 (MC), σ of the convoluted Gaussian free
 - \rightarrow S-wave (NR K^+K^-): Exponential with coefficient free

¹Modified Gaussian with asymetric tails

Mass fit model: MC

Mass 4hK⁺K⁻: B_s⁰

Mass 4h: η_c

Mass 4h: J/ψ

2D fit ($m_{4hK^+K^-} \times m_{K^+K^-}$): Result

- Events are properly described:
 - $B^0 \rightarrow 4h\phi$ and $B^0 \rightarrow 4hKK$ full and dashed green lines, respectively
 - $B_s^0 \rightarrow 4h\phi$ and $B_s^0 \rightarrow 4hKK$ full and dashed red lines, respectively
 - bkg \rightarrow 4*h* ϕ and bkg \rightarrow 4*hKK* full and dashed black lines, respectively
- The fit yields $1355\pm50 \ B_s^0 \rightarrow 4h\phi$ events

1D fit (*m*_{4*h*}): Result

• $B_s^0 \rightarrow 4h\phi$ substract background are applied on the invariant mass 4h

Candidates / (7.0 MeV/c² 120 $\frac{N_{B_{S}^{fit}\rightarrow\eta_{c}\phi}^{fit}}{T}=1.02\pm0.13$ 3100 3150 M(4h) [MeV/c²] 3000 3050 Pull

Mass 4h

First observation of $B_s^0 \rightarrow \eta_c \phi!$

Preliminary branching fraction of $B_s^0 \rightarrow \eta_c \phi$

$$\mathcal{B}_{meas}(B^0_s \to \eta_c \phi) = \frac{N_{B^0_s \to \eta_c \phi}}{N_{B^0_s \to J/\psi \phi}} \times \mathcal{B}(B^0_s \to J/\psi \phi) \times \frac{\mathcal{B}(J/\psi \to 4h)}{\mathcal{B}(\eta_c \to 4h)} \times \frac{\varepsilon_{B^0_s \to J/\psi \phi}}{\varepsilon_{B^0_s \to J/\psi \phi}}$$

1)
$$\mathcal{B}(B_S^0 \to J/\psi \phi) \times \frac{\mathcal{B}(J/\psi \to 4h)}{\mathcal{B}(\eta_c \to 4h)} = (3.3 \pm 0.5) \times 10^{-4}$$

2) $\frac{\varepsilon_{B_S^0 \to J/\psi \phi}}{\varepsilon_{B_S^0 \to \eta_c \phi}} = 1.01 \pm 0.01$
3) $\frac{N_{B_S^0 \to \eta_c \phi}}{N_{B_S^0 \to J/\psi \phi}} = 1.02 \pm 0.13$

 $\begin{array}{l} \text{Preliminary (LHCb)} \\ \mathcal{B}_{\text{meas}}^{\text{prelim}}(B_s^0 \rightarrow \eta_c \phi) = (3.31 \pm 0.43(\text{stat}) \pm 0.50(\mathcal{B}) \pm 0.05(\text{syst})) \times 10^{-4} \end{array}$

Conclusions:

- First observation of $B_s^0
 ightarrow \eta_c \phi$
- Using 4h: $\mathcal{B}_{\text{meas}}^{\text{prelim}}(B_s^0 \rightarrow \eta_c \phi) = (3.3 \pm 0.7) \times 10^{-4}$
- Analysis prospects:
 - Complete systematics study
 - Publish the BR
- Thesis prospects:
 - Start ϕ_s with runll

Backup

CKM matrix and Unitary Triangle

The source of CPV in quark sector

$$\begin{pmatrix} d \\ s \\ b \end{pmatrix}' = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}^{\text{phys}}$$

$$U = \begin{pmatrix} d \\ s \\ V_{cKM} \text{ is unitary and can be parameterized with 4 parameters A, λ , ρ and η :

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$V_{CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ V_{cd} V_{cb}^* \\ V_{cd} V_{c$$$$

- Can't explain baryonic asymmetry in the universe
 → should be additional mechanism beyond SM
- Measure the CKM parameters to find inconsistencies in UT

The LHCb Trigger in 2011–2012 (runl)

L0 hardware trigger:

- Find lepton, hadron with high p_T
- Reduce the rate from 40 MHz to 1 MHz
- HLT1 software trigger:
 - Finds vertices in VELO
 - Tracks with high IP and $p_{\rm T}$
- HLT2 software trigger:
 - Reconstruct all tracks in event
 - Select inclusive/exclusive b-hadrons
 - Output rate = 5 kHz

The LHCb Trigger in 2015–2018 (runII)

L0 hardware trigger:

- Find lepton, hadron with high p_T
- Reduce the rate from 40 MHz to 1 MHz
- HLT1 software trigger:
 - Finds vertices in VELO
 - Tracks with high IP and $p_{\rm T}$
- Alignement and calibration performed online!
- HLT2 software trigger:
 - Reconstruct all tracks in event
 - Select inclusive/exclusive b-hadrons
 - Output rate = 12.5 kHz

Efficiency computation: total efficiency

 $\varepsilon = \varepsilon^{\text{geo}} \cdot \varepsilon^{\text{reco}} \cdot \varepsilon^{\text{sel}} \cdot \varepsilon^{\text{PID}}$

• $(\varepsilon_{B^0_{\to} X_{\phi}})_{qeo}$ is given after MC generation $\left(\frac{\varepsilon_{B_{s}^{0} \to J/\psi \phi}}{\varepsilon_{s}}\right)_{geo} = 1.008 \pm 0.005$ • $(\varepsilon_{B_s^0 \to X\phi})_{reco} = \frac{\mathcal{N}(MC \text{ events reconstructed truth matched})}{\mathcal{N}(MC \text{ events generated in the LHCb acceptance})}$ $\left(\frac{\varepsilon_{B_{s}^{o} \rightarrow J/\psi \phi}}{\varepsilon_{c0}}\right)_{reco} = 0.9757 \pm 0.0018$ • $(\varepsilon_{B_s^0 \to X\phi})_{sel} = \frac{\mathcal{N}(MC \text{ events reconstructed and selected truth matched})}{\mathcal{N}(MC \text{ events reconstructed truth matched})}$ $\left(\frac{{}^{^{c}B_{s}^{0} \to J/\psi \phi}}{c}\right)_{sel} = 1.030 \pm 0.009$ • $(\varepsilon_{B_s^0 \to X\phi})_{PID} = \frac{\mathcal{N}(\text{MC events reconstructed, selected truth matched and PID})}{\mathcal{N}(\text{MC events reconstructed and selected truth matched})}$ $\left(\frac{\varepsilon_{B_{S}^{0} \rightarrow J/\psi \phi}}{\varepsilon_{p0}}\right)_{PID} = 1.000 \pm 0.007$

$$\left(\frac{\varepsilon_{B_{S}^{0} \to J/\psi \phi}}{\varepsilon_{B_{S}^{0} \to \eta_{C} \phi}}\right)_{tot} = 1.01 \pm 0.01$$

$B ightarrow \mu^+ \mu^-$ combined analysis of CMS and LHCb

[CMS and LHCb, arXiv:1411.4413, submitted to Nature]

- $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9}$ (6.2 σ), first observation!
- $\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$ (3.2 σ) evidence for $B^0 \to \mu^+ \mu^-$
- $\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)} = 0.14^{+0.08}_{-0.06}$ (2.3 σ of SM)

$B ightarrow \mu^+ \mu^-$ consequences

[Mahmoudi et al, arXiv1401.2145]

Modified from [D. Straub, Nuovo Cim. C035N1 (2012) 249]

UNOFFICIAL

Strong constraints on many NP models, in particular those with large $\tan\beta$

Test of lepton universality with $B^+ o K^+ \ell^+ \ell^-$ [PRL,113, 151601 (2014)]

• Search for NP in the above loops $(q^2 = m_{\ell\ell}^2)$

$$R_{K} \equiv \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})} = 1 \pm \mathcal{O}(10^{-3}) \text{ in the SM}$$

- $R_{\mathcal{K}}(\text{LHCb}, 1 < q^2 < 6 \,\text{GeV}^2/c^4) = 0.745^{+0.090}_{-0.074} \pm 0.036$ (2.6 σ from SM)
- To be watched out with more statistics

 $B^0 o K^* \mu^+ \mu^-$ [JHEP 08 (2013) 131, PRL 111 (2013) 191801]

- Same motivations as B⁻ → K⁻ℓ⁺ℓ⁻ (same SM loops, but with a vector in the final state)
- Complicated angular analysis with many observables:

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3}{4} (1-F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K + \frac{1}{4} (1-F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell \right]$$
$$- F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi$$
$$+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$$
$$+ S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$$
$$+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi$$

Can parameterize the angular coeff to be largely free of form factor uncertainties [S. Descotes-Genon et al, arXiv:1303.5794]
 e.g. P'₅ = S₅/√F_L(1-F_L) where F_L is the fraction of longitudinal polarization, S₅ is the coefficient of sin 2θ_K sin θ_ℓ cos φ in the decay rate.

- Mainly compatible with the SM expect one angular variable
- Local 3.7 σ discrepancy with SM prediction in 3rd bin of P'_5
- Look-elsewhere-effect-corrected SM p-value of this analysis is 0.5%
- Theoretical work ongoing to better understand this bin.
 NP contribution to EW penguin Wilson coeff C₉?
- LHCb update with full Run 1 data expected soon

Mixing induced CPV in B_s^0

• Interference between B_s^0 decay to $J/\psi\phi$ either directly or via $B_s^0 - \overline{B}_s^0$ oscillation gives rise to a CP violating phase $\phi_s^{J/\psi\phi} \equiv \phi_s = \Phi_M - 2\Phi_D$

- In SM, $\phi_s \simeq -2\beta_s = -(0.0363 \pm 0.0013) \, \text{rad}, \ \beta_s = \arg(-V_{ts} V_{tb}^* / V_{cs} V_{cb}^*)$
- Neglecting sub-leading diagrams, the same phase is expected in $B_s^0 \to D_s^+ D_s^-$ and $B_s^0 \to J/\psi \pi \pi$
- Measured by fitting differential decay rates for B_s^0 and \overline{B}_s^0 :

 $\frac{\mathrm{d}^{4}\Gamma(B_{s}^{0}\to J/\psi\phi)}{\mathrm{d}t\,\mathrm{d}\cos\theta_{\mu}\,\mathrm{d}\varphi_{h}\,\mathrm{d}\cos\theta_{K}}=f(\phi_{s},\Delta\Gamma_{s},\Gamma_{s},\Delta m_{s},M(B_{s}^{0}),|A_{\perp}|,|A_{\parallel}|,|A_{s}|,\delta_{\perp},\delta_{\parallel},\ldots)$

Mixing-induced CPV in $B^0_s o J\!/\psi\,h^+h^-$ [arXiv:1411.3104]

Unbinned maximum likelihood fit (time, mass, angles, initial flavour)

- $\Delta\Gamma_s \equiv \Gamma_L \Gamma_H = 0.0805 \pm 0.0091 \pm 0.0032 \text{ ps}^{-1}$
- Combined with $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$: $\phi_s = -0.010 \pm 0.039$

CPV in B^0 and B^0_s mixing

- Semileptonic asymmetry $A_{SL}^q = \frac{\Gamma(\bar{B}_q \to B_q \to f) \Gamma(\bar{B}_q \to \bar{B}_q \to \bar{f})}{\Gamma(\bar{B}_q \to B_q \to f) + \Gamma(\bar{B}_q \to \bar{B}_q \to \bar{f})}$ very small in the SM
- D measures the di-muon asymmetry, A^b_{SL}, mixture of semileptonic asymmetries in B⁰_s (Asls) and B⁰ (Asld). ~ 3σ from SM [D0, PRD 89 (2014) 012002]
- Same approach delicate at *pp* collider due to production asymmetries. LHCb measures individually:

 $\mathsf{Asls} = (-0.06 \pm 0.50 \pm 0.36)\%, 1\,\text{fb}^{-1},$ [LHCb, PLB 728 (2014) 607]

AsId = $(-0.02 \pm 0.19 \pm 0.30)$ %, 3 fb⁻¹, [arXiv:1409.8586]

Compatible with both SM and D

Fit 3D (mass 4h, mass 6h, mass 2h) 2K2pi

Fit 3D (mass 4h, mass 6h, mass 2h) 2K2pi

Data Total PDF

42/27

All modes yield 2K2pi

	N ^{fit}		
$N_{B^0 o \eta_c KK}^{fit}$	0 ± 18		
$N_{B^0 o \eta_c \phi}^{fit}$	17± 7		
$N_{B^0 o J/\psi \ KK}^{fit}$	9± 5		
$N_{B^0 o J/\psi \phi}^{fit}$	0± 2		
$N_{B^0 \rightarrow NBKK}^{fit}$	0 ± 5		
$N_{B^0 \to NR\phi}^{fit}$	7± 15		
$N_{B_s^0 o \eta_c KK}^{fit}$	16± 16		
$N^{fit}_{B^0_s o \eta_c \phi}$	141 ± 24		
$N_{B_S^0 o J/\psi \ KK}^{fit}$	20± 12		
$N^{fit}_{B^0_s o J/\psi \phi}$	238± 22		
$N_{B_s^0 \rightarrow NRKK}^{fit}$	109 ± 26		
$N_{B_{s}^{0} ightarrow NR\phi}^{fit}$	296 ± 38		
N ^{fit}	338+ 20		
IN4hKK	330±29		
$N_{4h\phi}^{\prime\prime\prime}$	674± 41		

Fit 3D (mass 4h, mass 6h, mass 2h) 4pi

44/27

Fit 3D (mass 4h, mass 6h, mass 2h) 4pi

Data

45/27

All modes yield 4pi

	N ^{fit}
$N_{B^0 o \eta_c KK}^{fit}$	0 ± 2
$N^{fit}_{B^0 o \eta_c \phi}$	0± 4
$N_{B^0 o J/\psi \ KK}^{fit}$	4± 7
$N^{fit}_{B^0 o J/\psi \phi}$	5± 9
$N_{B^0 \rightarrow NRKK}^{fit}$	62 ± 18
$N_{B^0 o NR\phi}^{fit}$	83 ± 24
${\sf N}_{{\sf B}_{s}^{0} ightarrow \eta_{c}{\sf K}{\sf K}}^{{\it fit}}$	16± 15
$N^{fit}_{B^0_s ightarrow\eta_c\phi}$	199 ± 26
$N_{B_S^0 o J/\psi \ KK}^{fit}$	0± 17
$N^{fit}_{B^0_s o J/\psi \phi}$	98± 20
$N_{B_s^0 o NRKK}^{fit}$	79 ± 23
$N^{fit}_{B^0_s o NR\phi}$	253 ± 40
N ^{fit} 4hKK	298 ± 31
$\mathcal{N}_{4h\phi}^{\mathit{fit}}$	380 ± 39

Fit 3D (mass 4h, mass 6h, mass 2h) 4K

47/27

Fit 3D (mass 4h, mass 6h, mass 2h) 4K

All modes yield 4K

	N ^{fit}
$N^{\textit{fit}}_{B^0 o \eta_c KK}$	0 ± 0
$N_{B^0 o \eta_c \phi}^{fit}$	0± 0
$N_{B^0 \rightarrow J/\psi \ KK}^{fit}$	0± 0
$N_{B^0 \rightarrow J/\psi \phi}^{fit}$	1± 1
$N_{B^0 \rightarrow NRKK}^{fit}$	0± 1
$N_{B^0 o NR\phi}^{fit}$	5± 2
$N_{B_s^0 o \eta_c KK}^{fit}$	5± 1
$N_{B_s^0 o \eta_c \phi}^{fit}$	35± 4
$N_{B_S^0 o J/\psi \ KK}^{fit}$	0± 0
$N_{B_s^0 o J/\psi \phi}^{fit}$	32± 4
$N_{B_s^0 \rightarrow NRKK}^{fit}$	0± 422
$N^{\mathit{fit}}_{B^0_s o NR\phi}$	53± 6
N ^{fit}	16± 3
N ^{fit} _{4hφ}	42± 5

Used data samples

- Real Data
 - Momentum scale calibration applied
 - Full stat of run1
 - 2011: 0.98 fb⁻¹
 - 2012 1 99 fb⁻¹
 - Stripping 21(r1)
 - Stream: BHADRON.MDST
 - Stripping Line: StrippingBs2EtacPhiBDTLine see 29/01/2015 talk
- MC Sim08g Pythia8:
 - DecFile: Bs Jpsiphi,hhhh=DecProdCut.dec 6065927 events
 - $B_s^0 \rightarrow J/\psi (KK\pi\pi)\phi(KK)$ $B_s^0 \rightarrow J/\psi (\pi\pi\pi\pi)\phi(KK)$
 - $B_s^0 \rightarrow J/\psi (KKKK)\phi (KK)$
 - DecFile: Bs etacphi,hhhh=update2015,DecProdCut.dec 6 123 927 events

•
$$B_s^0 \rightarrow \eta_c(KK\pi\pi)\phi(KK)$$

• $B_s^0 \rightarrow \eta_c(\pi\pi\pi\pi)\phi(KK)$

• $B_s \rightarrow \eta_c(KKKK)\phi(KK)$ • $B_s^0 \rightarrow \eta_c(KKKK)\phi(KK)$

6 hadrons in the final state

L0HadronDecision_TOS || L0Physics_TIS && HIt1TrackAllL0Decision_TOS && HIt2Topo(2,3,4)BodyBBDTDecision_TOS || HIt2IncPhiDecision_TOS

Branching fraction of $B_s^0 \rightarrow \eta_c \phi$

$$\mathcal{B}_{meas}^{i}(B_{s}^{0} \to \eta_{c}\phi) = \frac{N_{B_{s}^{0} \to \eta_{c}\phi}^{i}}{N_{B_{s}^{0} \to J/\psi \phi}^{i}} \times \mathcal{B}(B_{s}^{0} \to J/\psi \phi) \times \frac{\mathcal{B}^{i}(J/\psi \to 4h)}{\mathcal{B}^{i}(\eta_{c} \to 4h)} \times \frac{\varepsilon_{B_{s}^{0} \to J/\psi \phi}^{i}}{\varepsilon_{B_{s}^{0} \to \eta_{c}\phi}^{i}}$$

with $i \in \{2K2\pi, 4\pi, 4K\}$

- 1) Inputs $\mathcal{B}(B_s^0 \to J/\psi \phi)$, $\mathcal{B}^i(J/\psi \to 4h)$ and $\mathcal{B}^i(\eta_c \to 4h)$ taken from PDG (see backup 69)
- 2) Efficiencies computed using exclusive η_c and J/ψ MC (see following)
 - We factorize the total efficiency as: $\varepsilon = e^{\text{geo}} \cdot e^{\text{reco}} \cdot e^{\text{sel}} \cdot e^{\text{PID}}$ with sel = (trigger + stripping + offline selection and BDT)
- 3) $\frac{N_{B_{S}^{0} \to \eta_{C}\phi}}{N_{B_{S}^{0} \to J/\psi \phi}}$: extracted from unbinned maximum likelihood fit to data (see following)

• Table is given after MC generation

	Efficiency (%		
Years	$B_s^0 \rightarrow \eta_c \phi$	$B_S^0 \rightarrow J/\psi \phi$	Ratio
MC2011	0.1601 ± 0.0005	0.1610 ± 0.0005	1.006 ± 0.005
MC2012	0.1616 ± 0.0006	0.1631 ± 0.0006	1.009 ± 0.005
Total	0.1609 ± 0.0005	0.1620 ± 0.0005	1.008 ± 0.005

•
$$\left(\frac{\varepsilon_{B_s^0 \to J/\psi \phi}}{\varepsilon_{B_s^0 \to \eta c \phi}}\right)_{geo} = 1.008 \pm 0.005$$

Efficiency computation: selection

• $(\varepsilon_{B^0_s \to X\phi})_{sel} = \frac{\mathcal{N}(MC \text{ events reconstructed and selected truth matched})}{\mathcal{N}(MC \text{ events reconstructed truth matched})}$

→ selected means: trigger + stripping + offline selection and BDT

	Efficiency (%): selection				
Mode	$B_0^0 \rightarrow \eta_C \phi$		$B_c^0 \rightarrow J/\psi \phi$		Ratio
	Mag Down	Mag Up	Mag Down	Mag Up	
2011 KKpipi mode	3.38 ± 0.08	3.19 ± 0.07	3.34 ± 0.08	3.33 ± 0.08	1.016 ± 0.023
2012 KKpipi mode	6.2 ± 0.07	6.13 ± 0.08	6.55 ± 0.08	6.23 ± 0.08	1.036 ± 0.013
2011 pipipipi mode	5.45 ± 0.13	5.38 ± 0.12	5.61 ± 0.14	5.6 ± 0.14	1.034 ± 0.025
2012 pipipipi mode	4.94 ± 0.09	5.1 ± 0.09	5 ± 0.1	5.34 ± 0.1	1.03 ± 0.019
2011 KKKK mode	5.22 ± 0.29	4.64 ± 0.28	4.65 ± 0.25	4.55 ± 0.24	0.931 ± 0.05
2012 KKKK mode	6 ± 0.23	5.6 ± 0.22	6.19 ± 0.21	5.83 ± 0.2	1.04 ± 0.04
Total	5.21 ± 0.04	5.12 ± 0.04	5.35 ± 0.04	5.3 ± 0.04	1.03 ± 0.009

•
$$\left(\frac{\varepsilon_{B_s^0 \to J/\psi \phi}}{\varepsilon_{B_s^0 \to \eta c \phi}}\right)_{sel} = 1.030 \pm 0.009$$

Efficiency computation: PID

- $(\varepsilon_{B_s^0 \to X\phi})_{PID} = \frac{\mathcal{N}(\text{MC events reconstructed, selected truth matched and PID})}{\mathcal{N}(\text{MC events reconstructed and selected truth matched})}$
- used PIDCalib package:
 - 1) We created calibration sample for K and π with PID cut (value optimize after the BDT selection, see backup)
 - 2) We run the calibration over the reference
 - 3) We recalculate the statistical uncertainties taking into account the size of the reference

		Efficiency (%): PID			
Mode	$B_0^0 \rightarrow \eta_C \phi$		$B_c^0 \rightarrow J/\psi \phi$		Ratio
	Mag Down	Mag Up	Mag Down	Mag Up	
2011 KKpipi mode	86.31 ± 0.17	86.61 ± 0.17	86.63 ± 0.17	86.26 ± 0.19	0.9998 ± 0.0020
2012 KKpipi mode	86.66 ± 0.10	85.52 ± 0.11	86.47 ± 0.10	85.58 ± 0.11	0.9992 ± 0.0012
2011 pipipipi mode	81.12 ± 0.18	80.78 ± 0.19	81.12 ± 0.21	81.11 ± 0.20	1.0021 ± 0.0024
2012 pipipipi mode	81.54 ± 0.15	80.60 ± 0.15	81.38 ± 0.17	80.52 ± 0.16	0.9986 ± 0.0019
2011 KKKK mode	91.1 ± 0.5	91.7 ± 0.4	91.6 ± 0.4	91.5 ± 0.4	1.002 ± 0.005
2012 KKKK mode	91.10 ± 0.30	90.63 ± 0.35	91.68 ± 0.25	90.25 ± 0.30	1.0011 ± 0.0033
Total	84.90 ± 0.07	84.24 ± 0.07	85.16 ± 0.07	84.47 ± 0.07	1.000 ± 0.007

•
$$\left(\frac{\varepsilon_{B_{S}^{0} \to J/\psi \phi}}{\varepsilon_{B_{S}^{0} \to \eta_{C} \phi}}\right)_{PID} = 1.000 \pm 0.007$$

Definition of true MC candidate in our Tuples

- Signal ($B_s^0 \rightarrow \eta_c \phi$), BKGCAT:
 - $B_s^0 = 0 || B_s^0 = 10$
 - $\eta_c = 0 || \eta_c = 10$

• $\phi = \mathbf{0}$

- Control channel ($B_s^0 \rightarrow J/\psi \phi$), BKGCAT:
 - $B_s^0 = 0 || B_s^0 = 10$
 - $\phi = 0$
 - Without Stripping Line: $J/\psi = 0 ||J/\psi = 10$
 - With Stripping Line: $J/\psi = 20$

- The intermediate resonance from J/ψ or η_c are not in the decay descriptor
- The Stripping Line needs the decay descriptor written with η_c

BKGCAT=0: true NR signal BKGCAT=0: all intermediate states of the decay descriptor are not correctly reconstructed BKGCAT=20: the true MC particle defined in the decay descriptor is not a signal decay
Fit 3D with negative yield

Fit 3D result: shape parameters with negative yield

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=25973 FROM HESSE STATUS=OK 594 CALLS 6924 TOTAL EDM=368.06 STRATEGY=1 ERROR MATRIX ACCURATE EXT PARAMETER INTERNAL INTERNAL NO, NAME VALUE ERROR STEP SIZE VALUE 1 Bs kNR 4h 5.30469e-04 4.86051e-04 1.86259e-06 5.30469e-04 2 EtacMean 2.98260e+03 2.05098e+00 4.55868e-04 1.30289e-01 3 PhiMean 1.01987e+03 7.50387e-02 8.24517e-05 -6.60038e-03 4 Resolution 2h Phi 1.03377e+00 1.44010e-01 1.41236e-04 -1.11208e+00 5 Resolution_4h_Etac 9.59493e+00 3.48332e+00 1.53719e-03 -9.54154e-02 6 jpa m 5.28519e+03 3.15603e+00 2.16405e-01 -3.84705e+00 7 ipa m ipsi 3.09985e+03 7.69664e-01 8.36158e-04 6.06027e-01 8 jpa ms 5.37019e+03 4.48585e-01 5.17945e-04 6.92451e-01 9 jpa s jpsi 1.15274e+01 9.61494e-01 1.06403e-03 -3.14943e+00 10 ipa ss 1.57949e+01 4.98294e-01 4.01853e-04 1.59665e-01 11 kCombi 4hPhi -7.96039e-03 5.66016e-04 2.16122e-07 -7.96039e-04 12 kCombi 4h KK 2.14310e-03 5.88499e-04 1.19272e-05 2.14311e-03 13 kCombi 4h Phi 8.83311e-04 4.16452e-04 1.65558e-06 8.83311e-04 14 kCombi 6h -6.46857e-03 7.05351e-04 2.82904e-07 -6.46857e-04 15 kSWayes 2h 6.75956e-01 9.72413e-06 3.73968e-05 6.76472e-02 16 kSWayes 2h Combi 1.85417e-02 3.05119e-03 1.24127e-06 1.85417e-03 17 kSWaves 2h NR 4.78778e-03 5.50356e-03 2.19921e-06 4.78778e-04 18 nBd2EtacKK -1.00000e+02 4.99360e-01 2.76075e-03 -1.57078e+00 WARNING - - ABOVE PARAMETER IS AT LIMIT. 19 nBd2EtacPhi 2.48788e+00 1.44367e+01 9.70682e-04 2.52686e+00 20 nBd2|psiKK -1.00000e+02 4.99360e-01 2.76075e-03 -1.57078e+00 WARNING - - ABOVE PARAMETER IS AT LIMIT. 21 nBd2|psiPhi 2.86637e+00 9.40247e+00 7.06330e-04 6.21874e-01 22 nBd2NRKK 6.11796e+01 2.37578e+01 1.04509e-03 6.58329e-01 23 nBd2NRPhi 9.30068e+01 3.64578e+01 6.91520e-04 2.90793e-01 24 nBs2EtacKK -1.00000e+02 4.99722e-01 1.81734e-03 -1.57078e+00 WARNING - - ABOVE PARAMETER IS AT LIMIT. 25 nBs2EtacPhi 3.78863e+02 3.51819e+01 4.29625e-04 2.66003e-01 26 nBs2jpsiKK -1.00000e+02 4.99584e-01 2.22578e-03 -1.57075e+00 WARNING - - ABOVE PARAMETER IS AT LIMIT. 27 nBs2lpsiPhi 3.68684e+02 2.81130e+01 3.56974e-04 2.30996e-01 28 nBs2NRKK 2.31793e+02 3.08442e+01 3.86963e-04 1.06175e-01 29 nBs2NRPhi 5.97720e+02 5.43970e+01 3.38130e-04 1.96707e-01 30 nCombiKK 6.67359e+02 4.76397e+01 3.41186e-04 3.41306e-01 31 nCombiPhi 1.12703e+03 5.91034e+01 2.93076e-04 5.26731e-01

B_s^0 model fit (CB or hypatia)

J/ψ model fit (CB or hypatia)

η_c model fit (Voigtian or hypatia)

ϕ model fit (BW convoluted with Gaussian or CB)

ϕ model fit (hypatia)

Mass fit models tested $B_s^0 \rightarrow \eta_c(4h)\phi(K^+K^-)$

- Mass 6h:
- $ightarrow B_s^0$: CB with μ and σ free and all other parameters fixed (MC)
- $ightarrow B^0$: CB with μ free and all other parameters equal to B^0_s
- \rightarrow Combinatorial background: Exponentials with coefficient free
- Mass 4h
- $\rightarrow \eta_c$: Voigtian: μ free, Breit-Wigner line shape width fixed to 32.2 MeV and σ of the convoluted Gaussian free
- $\rightarrow J/\psi$: CB with μ and σ free, all other parameters fixed (MC)
- $\rightarrow\,$ "Physical background", NR m(4h): Exponentials with coefficient free
 - Mass K⁺K⁻
- → ϕ : BW convoluted with CB: μ free, Breit-Wigner line shape width fixed to 4.27 MeV and σ of the convoluted CB free and all other parameters fixed (MC)
- \rightarrow S-waves: Exponentials with coefficient free

MC model fit CB and voigtian(B_s^0 , ϕ , η_c and J/ψ)

Fit 3D with tested model (mass 4h, mass 6h, mass 2h)

 $\mathcal{B}_{ ext{meas}}^{ ext{prelim}}(B_s^0 o \eta_c \phi) = (3.53 \pm 0.48 (ext{stat}) \pm 0.54 (\mathcal{B}^*) \pm 0.04 (ext{syst eff})) imes 10^{-4}$

Selection efficiency without Hlt2IncPhiDecision_TOS

•
$$(\varepsilon_{B_{s}^{0} \to X\phi})_{sel} = \frac{\mathcal{N}(MC \text{ events reconstructed and selected truth matched})}{\mathcal{N}(MC \text{ events reconstructed truth matched})}$$

Trigger Line	B _c ⁰ -	$\eta_c \phi$	$\eta_c \phi \qquad B_c^0 \rightarrow$		Ratio
	Mag Down	Mag Up	Mag Down	Mag Up	
2011 KKpipi mode	3.22 ±0.07	3.05 ±0.07	3.21 ±0.07	3.19 ±0.07	1.02 ±0.024
2012 KKpipi mode	5.9 ±0.07	5.8 ±0.07	6.21 ±0.08	5.88 ±0.07	1.033 ±0.013
2011 pipipipi mode	5.23 ±0.12	5.19 ±0.12	5.35 ±0.13	5.4 ±0.13	1.031 ±0.025
2012 pipipipi mode	4.77 ±0.09	4.93 ±0.09	4.85 ± 0.09	5.16 ±0.1	1.032 ±0.019
2011 KKKK mode	4.88 ±0.28	4.27 ±0.26	4.43 ±0.24	4.35 ±0.24	0.958 ±0.05
2012 KKKK mode	5.63 ±0.22	5.13 ±0.21	5.77 ±0.2	5.34 ± 0.19	1.03 ±0.04
Total	4.97 ±0.04	4.88 ±0.04	5.1 ±0.04	5.03 ± 0.04	1.03 ±0.009

Table: Selection efficiency to each modes

•
$$\left(\frac{\varepsilon_{B_s^0 \to J/\psi \phi}}{\varepsilon_{B_s^0 \to \eta_c \phi}}\right)_{sel}^{tot}$$
 = 1.028 ± 0.009

about 5% of signal lost

Estimation of $\mathcal{B}(B_s^0 \to \eta_c(4h)\phi(KK))$

$$egin{aligned} \mathcal{B}(B^0_s o \eta_c(4h)\phi(\textit{KK})) &= \mathcal{B}(B^0_s o \eta_c\phi) imes \mathcal{B}(\eta_c o 4h) imes \mathcal{B}(\phi o \textit{KK}) \ &\simeq 2.3 imes 10^{-5} \end{aligned}$$

• $\mathcal{B}(B^0_s \to \eta_c \phi)$: • d = s hypothesis $\rightarrow \frac{\mathcal{B}(B^0_s \to \eta_c \phi)}{\mathcal{B}(B^0_s \to J/\psi \phi)} = \frac{\mathcal{B}(B_d \to \eta_c K^0)}{\mathcal{B}(B_d \to J/\psi K^0)}$ • $\eta_c \rightarrow K^+ K^- \pi^+ \pi^- \sim 53\%$ • $\mathcal{B}(\eta_c \to K^+ K^- \pi^+ \pi^-)$ NR • $\mathcal{B}(\eta_c \to K_0^* K^- \pi^+)$ • $\mathcal{B}(n_c \to K_0^* \overline{K}_0^*)$ • $\mathcal{B}(\eta_c \to f_2(1270)f_2'(1525))$ • $\mathcal{B}(\eta_c \to f_2(1270)f_2(1270))$ • $n_c \rightarrow \pi^+ \pi^- \pi^+ \pi^- \sim 40\%$ • $\mathcal{B}(\eta_c \to \pi^+ \pi^- \pi^+ \pi^-)$ NR • $\mathcal{B}(\eta_c \to \rho_0 \rho_0)$ • $\mathcal{B}(\eta_c \to f_2(1270)f_2(1270))$ • $\eta_c \rightarrow K^+ K^- K^+ K^- \sim 7\%$ • $\mathcal{B}(\eta_c \to K^+ K^- K^+ K^-)$ NR • $\mathcal{B}(n_c \to \phi K^+ K^-)$ • $\mathcal{B}(\eta_c \to \phi \phi)$

Decay modes (1/8)

Mode	${\cal B}$ from PDG
$\rho_0 \rightarrow \pi^+ \pi^-$	(1.00 ± 0.00)
$\omega \to \pi^+\pi^-$	($1.53 \pm 0.13) imes 10^{-2}$
$K_0^* \rightarrow K^+ \pi^-$	(0.67 ± 0.00)
$\phi \rightarrow K^+ K^-$	(48.9 ± 0.5)×10 ⁻²
$f_2(1270) \to \pi\pi$	($8.48 \pm 0.24) imes 10^{-1}$
$f_2(1270) ightarrow \pi^+\pi^-$	($5.65 \pm 0.16) imes 10^{-1}$
$f_2(1270) ightarrow K\overline{K}$	(4.6 \pm 0.4) $ imes$ 10 ⁻²
$f_2(1270) ightarrow K^+K^-$	($3.07 \pm 0.27) imes 10^{-2}$
$a_2(1320) ightarrow K\overline{K}$	(4.9 \pm 0.8)×10 ⁻²
$a_{ m 2}(1320) ightarrow K^+K^-$	(3.3 \pm 0.5) $ imes$ 10 ⁻²
$K_1(1400) \rightarrow K ho$	($0.30 \pm 0.30) imes 10^{-1}$
$K_1(1400)^\pm ightarrow K^\pm ho_0$	($0.20 \pm 0.20) imes 10^{-1}$
$K_2^*(1430) ightarrow K\pi$	(3.3 \pm 0.8)×10 ⁻¹
$f_2^\prime(1525) ightarrow K\overline{K}$	($8.87 \pm 0.22) imes 10^{-1}$
$f_2^\prime(1525) ightarrow K^+K^-$	$ $ (5.91 \pm 0.15) $ imes$ 10 $^{-1}$
$f_{ m 2}^{\prime}(1525) ightarrow \pi\pi$	$ $ ($0.82 \pm 0.15) imes 10^{-2}$
$f_{ m 2}^{\prime}(1525) ightarrow \pi^+\pi^-$	($0.55 \pm 0.10) imes 10^{-2}$

Mode	\mathcal{B} from PDG
$\eta_c ightarrow K^+ K^- K^+ K^-$ (NR)	($1.47 \pm 0.31) \times 10^{-3}$
$\eta_{c} \rightarrow \phi K^{+} K^{-}$	($0.29 \pm 0.14) \times 10^{-2}$
$\eta_{m{c}} ightarrow \phi(m{K}^+m{K}^-)m{K}^+m{K}^-$	(1.4 \pm 0.7)×10 ⁻³
$\eta_c \to \phi \phi$	($1.76 \pm 0.20) \times 10^{-3}$
$\eta_{m{c}} ightarrow \phi(m{K}^+m{K}^-)\phi(m{K}^+m{K}^-)$	(4.2 \pm 0.5) $ imes$ 10 ⁻⁴
$\eta_{c} \rightarrow f_{2}(1270)f_{2}(1270)$	($0.98 \pm 0.25) \times 10^{-2}$
$\eta_c o f_2(1270)(K^+K^-)f_2(1270)(K^+K^-)$	($0.92 \pm 0.26) imes 10^{-5}$
$\eta_{m{c}} ightarrow (m{K}^+ m{K}^- m{K}^+ m{K}^-)$	(3.3 \pm 0.8) $ imes$ 10 $^{-3}$

Mode	\mathcal{B} from PDG
$J/\psi ightarrow K^+K^-K^+K^-$ (NR)	(7.6 \pm 0.9)×10 ⁻⁴
$J/\psi ightarrow \phi K \overline{K}$	($1.83 \pm 0.24) imes 10^{-3}$
$J/\psi o \phi({\sf K}^+{\sf K}^-){\sf K}^+{\sf K}^-$	(6.0 ± 0.8) $ imes 10^{-4}$
$J/\psi ightarrow \phi f_2(1270)$	($0.72 \pm 0.13) imes 10^{-3}$
$J/\psi ightarrow \phi(K^+K^-) f_2(1270)(K^+K^-)$	($1.08 \pm 0.22) imes 10^{-5}$
$J/\psi ightarrow \phi f_2'(1270)$	(0.8 \pm 0.4) $ imes$ 10 ⁻³
$J/\psi \to \phi(K^+K^-)f'_2(1270)(K^+K^-)$	($0.23 \pm 0.12) imes 10^{-3}$
$J/\psi ightarrow (K^+K^-K^+K^-)$	($1.60 \pm 0.17) imes 10^{-3}$

Mode	\mathcal{B} from PDG
$\eta_{c} ightarrow K^{+}K^{-}\pi^{+}\pi^{-}$ (NR)	($0.69 \pm 0.11) \times 10^{-2}$
$\eta_c ightarrow K_0^* K^- \pi^+$	(2.0 \pm 0.7)×10 ⁻²
$\eta_{c} ightarrow K_{0}^{*}(K^{+}\pi^{-})K^{-}\pi^{+}$	(1.3 \pm 0.5) $ imes$ 10 ⁻²
$\eta_{m{c}} o m{K}^* \overline{m{K}}^*$	($0.70 \pm 0.13) imes 10^{-2}$
$\eta_{m{c}} ightarrow m{K}^*_{m{0}} \overline{m{K}}^*_{m{0}}$	(2.3 \pm 0.4)×10 ⁻³
$\eta_{m{c}} ightarrow m{K}^*_{m{0}}(m{K}^+\pi^-)ar{m{K}}^*_{m{0}}(m{K}^-\pi^+)$	($1.04 \pm 0.19) \times 10^{-3}$
$\eta_c \to f_2(1270) f_2'(1525)$	($0.97 \pm 0.32) imes 10^{-2}$
$\eta_{c} \rightarrow f_{2}(1270)(\pi^{+}\pi^{-})f_{2}'(1525)(K^{+}K^{-})$	$(0.32 \pm 0.11) imes 10^{-2}$
$\eta_{c} \rightarrow f_{2}(1270)(K^{+}K^{-})f_{2}'(1525)(\pi^{+}\pi^{-})$	(1.6 \pm 0.6)×10 ⁻⁶
$\eta_c \to f_2(1270) f_2(1270)$	($0.98 \pm 0.25) imes 10^{-2}$
$\eta_{c} ightarrow f_{2}(1270)(\pi^{+}\pi^{-})f_{2}(1270)(K^{+}K^{-})$	(1.7 \pm 0.5) $ imes$ 10 ⁻⁴
$\underline{\eta_{c} \to f_{2}(1270)(K^{+}K^{-})f_{2}(1270)(\pi^{+}\pi^{-})}$	$(1.7 \pm 0.5) imes 10^{-4}$
$\eta_{c} ightarrow (K^{+}K^{-}\pi^{+}\pi^{-})$	(2.5 \pm 0.5)×10 ⁻²

Decay modes (5/8)

Mode	${\cal B}$ from PDG
$J/\psi ightarrow K^+ K^- \pi^+ \pi^-$ (NR)	(6.6 \pm 0.5) $ imes$ 10 ⁻³
$J/\psi ightarrow K_0^* \overline{K}_0^*$	(2.3 \pm 0.7)×10 ⁻⁴
$J/\psi ightarrow K_0^*(K^+\pi^-) \overline{K}_0^*(K^-\pi^+)$	$(1.02\pm0.31){ imes}10^{-4}$
$J/\psi ightarrow a_2(1320) ho_0$	(3.6 \pm 0.7)×10 ⁻³
$J/\psi o a_2(1320)(K^+K^-) ho_0(\pi^+\pi^-)$	$(1.19 \pm 0.31) imes 10^{-4}$
$J/\psi ightarrow K_0^* \overline{K}_2^*$ (1430)	(6.0 \pm 0.6) $ imes$ 10 ⁻³
$J/\psi ightarrow K_0^*(K^+\pi^-) \overline{K}_2^*(1430)(K^-\pi^+)$	$(1.33 \pm 0.14) imes 10^{-3}$
$J/\psi ightarrow K_1(1400)^\pm K^\mp$	($0.38 \pm 0.14) imes 10^{-2}$
$J/\psi ightarrow K_1(1400)^{\pm} (K^{\pm} ho_0(\pi^+\pi^-))K^{\mp}$	(0.4 \pm 0.4) $ imes$ 10 ⁻⁴
$J/\psi ightarrow \phi f_2(1270)$	($0.72 \pm 0.13) imes 10^{-3}$
$J/\psi ightarrow \phi(K^+K^-)$ f_2(1270) $(\pi^+\pi^-)$	(2.0 \pm 0.4) $ imes$ 10 ⁻⁴
$J/\psi o \phi \pi^+ \pi^-$	(9.4 \pm 0.9) $ imes$ 10 ⁻⁴
$J/\psi ightarrow \phi(K^+K^-)\pi^+\pi^-$	(4.6 \pm 0.4)×10 ⁻⁴
$J/\psi ightarrow (K^+K^-\pi^+\pi^-)$	(8.9 ± 0.5) $ imes 10^{-3}$

Mode	\mathcal{B} from PDG
$\eta_c \to \pi^+ \pi^- \pi^+ \pi^-$ (NR)	($0.97 \pm 0.12) \times 10^{-2}$
$\eta_{c} \to \rho \rho$	(1.8 \pm 0.5)×10 ⁻²
$\eta_c ightarrow ho_0 ho_0$	$(0.60 \pm 0.17) \times 10^{-2}$
$\eta_{m c} ightarrow ho_0(\pi^+\pi^-) ho_0(\pi^+\pi^-)$	$(0.60 \pm 0.17) imes 10^{-2}$
$\eta_c \to f_2(1270)f_2(1270)$	($0.98 \pm 0.25) \times 10^{-2}$
$\underline{\eta_c \to f_2(1270)(\pi^+\pi^-)f_2(1270)(\pi^+\pi^-)}$	$ $ (3.1 \pm 0.8)×10 ⁻³
$\eta_{c} ightarrow (\pi^{+}\pi^{-}\pi^{+}\pi^{-})$	($1.88 \pm 0.22) \times 10^{-2}$

Mode	\mathcal{B} from PDG
$J/\psi ightarrow \pi^+\pi^-\pi^+\pi^-$ (NR)	($3.57 \pm 0.30) imes 10^{-3}$
$J/\psi \rightarrow \omega \pi^+ \pi^-$	(8.6 \pm 0.7) $ imes$ 10 ⁻³
$J/\psi ightarrow \omega (\pi^+\pi^-)\pi^+\pi^-$	($1.32 \pm 0.15) imes 10^{-4}$
$J/\psi ightarrow (\pi^+\pi^-\pi^+\pi^-)$	($3.70 \pm 0.30) imes 10^{-3}$

N	/lode	${\cal B}$ from	_		
η_c –	+ (4 <i>h</i>)	(4.7 ±	0.6)×10 ⁻²	_	
J/ψ	\rightarrow (4 <i>h</i>)	(14.1 ± 0	0.6)×10 ⁻³		
B_{s}^{0} -	$\rightarrow J/\psi\phi$	(10.7 ±	0.9)×10 ⁻⁴	_	
				_	
	10				
$\eta_{c} ightarrow \phi \phi$	16				
$\eta_{ extsf{c}} ightarrow 2$ K 2π	10	21			
$\eta_{c} ightarrow K_{0}^{*} \overline{K}_{0}^{*}$	9	18	11		
$\eta_{c} ightarrow 4\pi$	12	25	16	14	
$\eta_c \to f_2(1270)f_2(1270)$	3	6	4	3	5
	$\eta_c \rightarrow 4K$	$\eta_c \to \phi \phi$	$\eta_c ightarrow 2K2\pi$	$\eta_{c} \rightarrow \overline{K_{0}^{*} \overline{K}_{0}^{*}}$	$\eta_c ightarrow 4\pi$

Correlation matrix of $\eta_c \rightarrow 4h$

•
$$\eta_c \rightarrow KK\pi\pi$$

• $B_s^0 \rightarrow D_s D_s$
where $D_s \rightarrow \phi\pi$ or $D_s \rightarrow KK\pi$
• $B_s^0 \rightarrow \phi 4h$
• $B_s^0 \rightarrow \phi\phi\phi$
• $\eta_c \rightarrow \pi\pi\pi\pi$
• $B_s^0 \rightarrow D_s\pi\pi\pi$
• ...

Offline BDT

BDT trained with:

- Signal: MC TRUE events
- Background: real data Upper Side Band: m(6h) > 5600 MeV
- List of variables used:
 - ENDVERTEX, IPCHI2, TRACKCHI2, DIRA, FD, PT
- BDT traning result:

2012 2K2 π case

2011 2K2 π case

2012 4π case

2011 4π case

2012 2K2 π case

2011 2K2 π case

2012 4π case

2011 4π case

Background rejection for different method

BDT and PID output optimization

- The optimization is only to remove maximum of combinatorial background
- Procedure of optimization: FoM = $\frac{S}{\sqrt{S+B}}$, where $S \equiv$ Number of $B_s^0 \rightarrow 4h\phi$ event fitted (Gaussian) $B \equiv$ Number of combinatorial background fitted (Exponential)

- 1) BDT: Optimization of the FoM done separately for the year and the decay mode
- 2) ProbNN cut done with 2012 4π case:
 - K from ϕ : ProbNNk > 0.1 ; ProbNNpi < 0.7
 - π from η_c : ProbNNk < 0.6 ; ProbNNpi > 0.225
 - K from η_c : ProbNNk > 0.13 (Stripping line cut)

Stripping 21

Stripping 21, cut-based preselection (1/2)

 Efficiency of individual cut with MC: MC2012 Sim08e Signal decay B⁰_s → η_c (KKππ) φ (KK)

Variable		Cut	Efficiency (%)		%)
K^+ of η_C					
PT [MeV]	>	250.0	97.76	±	0.07
IPCHI2_OWNPV	>	4.0	88.09	±	0.15
ProbNNk	>	0.13	93.93	±	0.11
TRACK_CHI2NDOF	<	3.0	100	±	0.00
K^- of η_c					
PT [MeV]	>	250.0	97.79	±	0.07
IPCHI2_OWNPV	>	4.0	88.31	±	0.15
ProbNNk	>	0.13	93.91	±	0.11
TRACK_CHI2NDOF	<	3.0	100	±	0.00
π^+ of η_c					
PT [MeV]	>	250.0	94.34	±	0.11
IPCHI2_OWNPV	>	4.0	88.61	±	0.15
ProbNNpi	>	0.2	97.90	±	0.07
TRACK_CHI2NDOF	<	3.0	100	±	0.00
π^- of η_c					
PT [MeV]	>	250.0	94.40	±	0.11
IPCHI2_OWNPV	>	4.0	88.97	±	0.15
ProbNNpi	>	0.2	97.97	±	0.07
TRACK_CHI2NDOF	<	3.0	100	±	0.00
ης					
ΣΡΤ (K^+ , K^- , π^+ , π^-) [MeV]	>	2500.0	96.79	±	0.08
Σ IPCHI2_OWNPV (K^+ , K^- , π^+ , π^-)	>	30.0	93.03	±	0.12
IPCHI2_OWNPV	>	2.0	94.32	±	0.11
MM [MeV]	<	3071.0	96.13	±	0.09
MM [MeV]	>	2891.0	96.35	±	0.09
ENDVERTEX_CHI2/NDOF	<	9.0	99.70	±	0.03

Stripping 21, cut-based preselection (2/2)

• MC2012 Sim08e Signal decay $B_s^0 \rightarrow \eta_c (KK\pi\pi) \phi (KK)$

Variable	Cut		Efficiency (%)		%)
K^+ of ϕ					
PT	>	500.0	92.36	±	0.13
IPCHI2_OWNPV	>	4.0	91.35	±	0.13
PIDK	>	0.0	96.68	±	0.08
K^- of ϕ					
PT	>	500.0	92.20	±	0.13
IPCHI2_OWNPV	>	4.0	91.34	±	0.13
PIDK	>	0.0	96.73	±	0.08
φ					
PT [MeV]	>	800.0	95.53	±	0.10
DOCACHI2	<	30.0	99.96	±	0.01
IPCHI2_OWNPV	>	2.0	95.09	±	0.10
MM [MeV]	<	1049.455	96.48	±	0.09
MM [MeV]	>	989.455	100	±	0.00
ENDVERTEX_CHI2	<	9.0	95.81	±	0.09
B ⁰					
MM [MeV]	<	5866.77	100	±	0.00
MM [MeV]	>	4866.77	100	±	0.00
DIRA_OWNPV	>	0.99	98.13	±	0.06
ENDVERTEX_CHI2/NDOF	<	25.0	100	±	0.00
$B_s^0 \rightarrow \eta_c \phi$			37.07	±	0.23
Stripping 21, final selection with BDT

- BDT trained with:
 - Signal: MC 2012 TRUEID events
 - Background: real data 2012 Down BHADRONCOMPLEEVENT.DST →Upper Side Band: invariante mass of 6 hadrons in [5800;6000] MeV

List of variables used:

- PT of all particles except of B⁰_s
- IPCHI2 of all particles
- Decay time of B_s⁰, and vertex fit as returned by the DTF with PV constraint
- Direction angle (DIRA)

BDT works better than BDTG \rightarrow BDT efficiency: 95.54% (BDT response > 0) ε_{tot} = 37.07% × 95.54% = 35.41%

Variables ranked by the BDT (Stripping 21)

Rank	Variable	Importance
1	B_DIRA_OWNPV	8.549×10 ⁻²
2	sqrt(B_IPCHI2_OWNPV)	8.206×10 ⁻²
3	log(Etac_PT)	7.773×10 ⁻²
4	log(Phi_PT)	6.085×10 ⁻²
5	B_LOKI_FDS	5.679×10 ⁻²
6	Etac_ENDVERTEX_CHI2	5.429×10 ⁻²
7	EtacSumIPCHI2	4.604×10 ⁻²
8	log(Km_Etac_PT)	4.441×10 ⁻²
9	sqrt(Phi_IPCHI2_OWNPV)	4.369×10 ⁻²
10	log(Kp_Phi_PT)	4.343×10 ⁻²
11	Phi_ENDVERTEX_CHI2	4.256×10 ⁻²
12	log(Pim_Etac_PT)	4.208×10 ⁻²
13	log(Kp_Etac_PT)	4.150×10 ⁻²
14	log(Km_Phi_PT)	4.060×10 ⁻²
15	log(Pip_Etac_PT)	3.722×10 ⁻²
16	sqrt(Pip_Etac_IPCHI2_OWNPV)	3.354×10 ⁻²
17	sqrt(Pim_Etac_IPCHI2_OWNPV)	3.332×10 ⁻²
18	sqrt(Kp_Phi_IPCHI2_OWNPV)	3.070×10 ⁻²
19	sqrt(Etac_IPCHI2_OWNPV)	2.942×10 ⁻²
20	sqrt(Km_Phi_IPCHI2_OWNPV)	2.634×10 ⁻²
21	sqrt(Kp_Etac_IPCHI2_OWNPV)	2.541×10 ⁻²
22	sqrt(Km_Etac_IPCHI2_OWNPV)	1.419×10 ⁻²
23	B_PVFit_chi2	8.331×10 ⁻³

Distributions of the variables included in the BDT

m_{nh} histogram

- MC Sim08e with Stripping 21 line and final selection: $B_s^0 \rightarrow \eta_c(4h)\phi(KK)$ (blue)
- Real data Stripping 21(r1) BHADRON.MDST StrippingBs2EtacPhiBDTLine and final selection (red)

Fit result

Fit 3D result: shape parameters

***** ** 18 **HESSE 1.55e+04 solololololololok COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=26369.8 FROM HESSE STATUS=OK 592 CALLS 1624 TOTAL EDM=0.000280878 STRATEGY=1 ERROR MATRIX ACCURATE EXT PARAMETER INTERNAL INTERNAL NO. NAME VALUE ERROR STEP SIZE VALUE 1 Bs kNR 4h 4.45032e-04 5.08227e-04 1.92524e-06 4.45032e-04 2 EtacMean 2.98242e+03 2.02580e+00 4.51499e-04 1.21065e-01 3 PhiMean 1.01987e+03 7.49549e-02 8.29745e-05 -6.57696e-03 4 Resolution 2h Phi 1.01830e+00 1.44557e-01 1.43643e-04 -1.11559e+00 5 Resolution 4h Etac 9.56109e+00 3.38626e+00 1.50498e-03 -9.89937e-02 5.28666e+03 3.03718e+00 2.97948e-03 9.83070e-01 6 ipa m 7 jpa m jpsj 3.09977e+03 7.71660e-01 8.31897e-04 5.86949e-01 8 ipa ms 5.37021e+03 4.48713e-01 5.23731e-04 6.96243e-01 9 jpa s jpsi 1.16669e+01 9.83529e-01 1.07406e-03 4.76957e-02 10 jpa ss 1.58120e+01 4.98654e-01 4.05794e-04 1.63116e-01 11 kCombi 4hPhi -7.97820e-03 5.63442e-04 1.08512e-06 -7.97820e-04 12 kCombi 4h KK 2.01685e-03 5.98946e-04 1.20985e-05 2.01685e-03 13 kCombi 4h Phi 9.12797e-04 4.12646e-04 8.29276e-06 9.12797e-04 14 kCombi 6h -6.51162e-03 7.13198e-04 1.43842e-06 -6.51162e-04 15 kSWayes 2h -2.43473e-04 1.89154e-02 3.21894e-05 -2.43473e-05 16 kSWaves 2h Combi 1.85808e-02 3.07654e-03 1.25897e-06 1.85808e-03 17 kSWaves 2h NR 6.41926e-03 7.04879e-03 1.29737e-05 6.41926e-04 18 nBd2EtacKK 2.75709e-07 1.98394e+01 2.67593e-02 -1.57099e+00 WARNING - - ABOVE PARAMETER IS AT LIMIT. 19 nBd2EtacPhi 4.89550e+00 1.66666e+01 4.69704e-03 -7.39114e-01 20 nBd2jpsiKK 1.40874e+01 8.81089e+00 2.46863e-03 -6.08806e-02 21 nBd2lpsiPhi 2,79219e-07 1,97273e+01 2,65676e-02 -1,57099e+00 WARNING - - ABOVE PARAMETER IS AT LIMIT. 22 nBd2NRKK 5.36808e+01 2.26201e+01 1.65632e-03 7.36826e-02 23 nBd2NRPhi 8.60906e+01 3.43597e+01 5.01615e-03 -1.39546e-01 24 nBs2EtacKK 3.61269e+01 2.09088e+01 9.84860e-04 -6.92847e-01 25 nBs2EtacPhi 3.56710e+02 3.69032e+01 4.22998e-04 1.90179e-01 26 nBs2lpsiKK 1.16035e+01 1.51020e+01 1.65887e-03 -8.75602e-01 27 nBs2|psiPhi 3.63616e+02 2.92794e+01 3.58434e-04 2.13675e-01 28 nBs2NRKK 1.95326e+02 3.55106e+01 4.73068e-04 -2.20476e-01 29 nBs2NRPhi 6.14300e+02 5.53814e+01 3.43670e-04 2.30640e-01 30 nCombiKK 6.60799e+02 4.70448e+01 3.41370e-04 3.27417e-01 31 nCombiPhi 1.13375e+03 5.97768e+01 2.97169e-04 5.37123e-01

COVARIANCE MATRIX CALCULATED SUCCESSFULLY FCN=5981.3 FROM HESSE STATUS=OK 166 CALLS 941 TOTAL EDM=3.66594e-05 STRATEGY=1 ERROR MATRIX ACCURATE EXT PARAMETER INTERNAL INTERNAL NO. NAME VALUE ERROR VALUE PhiMean 1.01987e+03 7.49817e-02 7.90800e-06 -6.53456e-03 2 Resolution 2h Phi 1.01398e+00 1.44654e-01 6.85736e-05 -1.11657e+00 5.28478e+03 2.88298e+00 7.32257e-04 6.40396e-01 3 ipa m 5.37016e+03 4.58667e-01 2.52379e-04 6.83143e-01 4 ipa ms 5 ipa ss 1.62201e+01 5.32643e-01 2.06191e-04 2.46515e-01 6 kCombi 4hPhi -8.16386e-03 5.96615e-04 1.07733e-07 -8.16387e-04 7 kCombi 6h -6.54176e-03 7.18643e-04 1.37600e-07 -6.54176e-04 8 kSWaves 2h 5.85377e-03 5.27589e-03 5.08088e-06 5.85377e-04 9 kSWaves 2h Combi 1.82499e-02 3.05348e-03 5.99096e-07 1.82500e-03 6.44114e+01 2.41515e+01 4.34404e-04 -3.63862e-01 10 nBdKK 11 nBdPhi 1.07427e+02 2.96334e+01 2.35664e-04 -6.06861e-01 12 nBsKK 2.47782e+02 3.21815e+01 2.31978e-04 -8.87079e-03 13 nBsPhi 1.35466e+03 5.01202e+01 6.05650e-05 -9.70473e-02 14 nCombiKK 6.62604e+02 4.77496e+01 1.63388e-04 3.31232e-01 15 nCombiPhi 1.09412e+03 5.94849e+01 1.36533e-04 4.76677e-01

FCN=-815.139 FROM MIGRAD STATUS=CONVERGED 111 CALLS 437 TOTAL ERROR MATRIX ACCURATE EDM=3.37148e-07 STRATEGY= 1 STEP FIRST EXT PARAMETER NO. NAME VALUE SIZE DERIVATIVE 1 Bs kNR 4h 3.57690e-04 4.85025e-04 8.68871e-06 5.31541e-01 2 EtacMean 2.98374e+03 1.93867e+00 1.92021e-03 -1.04733e-03 3 Resolution 4h Etac 9.98833e+00 3.28558e+00 6.41213e-03 -9.02455e-05 4 jpa m jpsi 3.09946e+03 6.74731e-01 3.06389e-03 4.78979e-04 5 ipa s ipsi 1.10558e+01 8.47293e-01 4.21921e-03 -7.06240e-04 6 nBs2EtacPhi 3.59376e+02 3.07600e+01 3.33422e-05 1.96271e-02 7 nBs2lpsiPhi 3.66558e+02 2.53460e+01 2.89690e-05 -1.88946e-01 8 nBs2NRPhi 6.28713e+02 4.15479e+01 2.44196e-05 -2.51269e-01