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Point1: Expliquer le besoin scientifique et la dimension big data (AC Camproux)
* Big biological data (dimension big data)

* Pb spécifique du big data en biologie

* Big data bioinfomatique

Point2 : Applications interdisciplinaires sur SPC (C. Etchebest, B.Villoutreix)
*  Omique

* Bioinformatique structurale: dynamique moléculaire

* Molécules chimiques
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Points 3: Besoins en infrastructure (stockage, cpu) (P. Tuffery)
Points 6 et 7: Participation grands programmes nationaux/ Liens industriels,
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Point 1 : Scientific need and big data dimension

e . . . European Bioinformatics Institute (EBI),
Blg BlOIOglcal Data' onepof the ];argest biology-(g/at)a
repositories :

= 18 petabytes about genes, proteins,
molecules data in 2013 versus
40 petabytes in 2014

-Technologies for capturing bio data are becoming cheaper and
more effective (such as automated genome sequencers).

Size of a single sequenced human genome is approximately 200 gigabytes
== > New high-flow technologies in molecular biology can deliver 40
multiple gigabytes of data /day.

== > |ncreasingly accumulated large volumes of information about
human, animals, plants or microbe,..

(a) Genomes (all species)

Life sciences today need more robust, computable, quantitative,
accurate and precise ways to handle the big data

== > central roles of bioinformatics in the future research of the
biological and biomedical fields

(b) Gene expression data

Quantity of data stored by EBI over the years [8]

== > need to develop Big Data bioinformatics strategy for data Total storage size doubling every year.

management, analysis and accessibility EBI Hinxton data center cluster: 17,000 cores and
74 terabytes of RAM



Biology Big Data specificity

Big data has 4 important features 4V’s: volume of data, velocity of processing the data,
variability of data sources and veracity of the data quality.

+ incremental data: new data dynamically added to the big data lake from time to time

Biological data

- Highly heterogeneous:

e same types of data are represented in different forms generated using different methods from

genetics, physiology, pathology to imaging EMBL datab
atabase

e simultaneously recorded from over thousands of cells or more, replicats  european molecular biology laboratory
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Biology Big Data specificity

- Geographically distributed:
bioinformatics data can be geographically distributed all over the world.
== > difficulty to transfer due to their cost, privacy and other ethical issues ...

* Hypothesis-driven study: a key for big biological data mining
4-V features == > association or correlation rather than causal relationships

For deciphering the mechanisms of biological processes and diseases, need to know causal
relationship among biological elements (genes, proteins, and pathways) which form complex
biological systems
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Bioinformatics analysis

Bioinformatics traditionally organized and developed around 4 skills:

- Genomic bioinformatics: DNA and proteins expertise (genetics, genomics, transcriptomics,
metagenomics and métagénétique)

- Structural bioinformatics: modeling of molecules and macromolecules (drug design,
proteomics, immunology)

- Bioinformatics image: apply the methods of signal processing in medical and biological
imaging (CT / MRI, microscopy, microarray)

- Biostatistics : process needs in biology statistics (population genetics, toxicology, etc.)

==> curation of data in current bioinformatics analysis : 60% timing work



Big Data Bioinformatic strategy

New era of bioinformatics for big data

* Management, curation and connection of biological big data

* Integration, comparison and relationship
* To issue new hypotheses to produce new models and compare them to experimentation

Adapted algorithms and methods fast, large scale, distributed, optimised for iterative and

complexe bioinformatics problems but also fault tolerant, robust to missing data, unlabeled

data, redundancy, variables selection...
== > Unsupervised and supervised machine learning methods/ Graph Theory

== > Computational systems biology: to understand essential mechanisms of biological

systems



Possibilités d'applications interdisciplinaires
connues




From « Omics » to System Biology
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petabyte (PB) even exabyte (EB).

Questions and Challenges:

Sequence Analysis

Microarrays Analysis: Adding Time
variable=> Dynamics

Gene-gene network Analysis: a
complex and highly iterative problem

Protein-Protein Network Analysis

Evolutionary research:
Pathway analysis

Disease network analysis

MAIN CHALLENGE: from association study to causality study.



« Omics » and System Biology

* New technologies and methods for analyses: Hardware and

Software.
— Many new companies:
(e.g. BioDatomics,
400 tools for analyzing
genomic data running on a cluster)

Correlative methods:
Network and cluster analysis

Observations: Vastly
Data mining, “omics” increased

e Data driven Hypothesis? :
— Example: Deep learning methods

Patterns:
Network structures

A volume

Bottleneck!

v

Experiment:
Evaluation of
causality

Hypotheses:
Inference of
causality
“knowledge”

Synthesis:
Automated
inference




Applications in Structural Bioinformatics
Molecular Dynamics Simulations

e Study of systems behaviour as a function of time:
 Example:
* Conformational Transitions
* Transport Mechanisms
* Recognition Mechanisms : protein-protein, proten-ligand.
* Folding of Biological macromolecules

e Statistical Sampling :
 Example:
e Evaluation of thermodynamical quantities
* Refinement of structures obtained from biophysical data: NMR, X-Ray



Stakes, challenges and bottlenecks

* Challenges: Examples
Elucidation of functional mechanisms of the most important drug

" targets: GPCR receptor, G protein and mechanisms of nucleotide
4 A release through internal rearrangement of G protein
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Large Conformational Change
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Stakes, challenges and bottlenecks

Time Scale in biology: us, ms, s
— Integration Step: fs. => 10°*3 calculations

Simulation Exeeriment

10-15 1012 10° 106 10-3 1 103

¢&——o Bond Vibration .:’::. -
&——o DNA Twisting ©e
&——@ Hinge Motion :
o e Helix-Coil Transition

e———————» Protein Folding

+_, «——e Lipid exchange via diffusion y w—

e¢——#o |igand-Protein Binding & , | .
e&—e Torsional correlation in lipid headgroups <4



Stakes, challenges and bottlenecks

System Size: billions of interacting particules .

Current Opinion in Structural Biology

(a) Translocating ribosome at the pretranslocation state with an A-site tRNA (red) and a P-site tRNA (green) [49°°]. A red arrow shows the direction
of tRNA’s traversal motion. (b) Insertion of a nascent protein by the ribosome into a nanodisc [50] membrane working with the SecYE translocon
[51]. The nascent protein and P-site tRNA are shown in green. A red arrow shows the direction of the nascent protein’s insertion motion. C.
Bacterial ribosome with the antibiotic drug erythromycin (in red circle) shown at its binding site inside the ribosome [16°].




Stakes, challenges and bottlenecks

* Data Storage:

— Obligation to neglect time steps that could be crucial for
understanding mechanisms

— Obligation to neglect some particles.

* Data analysis :
— Determination of dynamical interaction networks

— Transition Pathways

e Switching between scales: (QM/MM/CG)

NEEDS for NEW ANALYSIS PARADIGMS




Possibilités d'applications
interdisciplinaires sur SPC

““Big data”” in the area of
“chemistry - drugs”: overview

USPC
Nov 2015



Epochs in the field

Empirical — up until 1960’s
“Rational” — 1960’s to 1990’s: “lock & key”
Big Experiment — 1990’s to 2000’s

— High throughput screening...Human genome

Big Data — 2010’s onwards
— Informatics-driven drug discovery and biology
— Diseases are more complex than anticipated



Big Data in the public domain:
28 nov 2015

Some data in chemistry/drugs - biochemistry, e.g.,:
* Pubchem

Compounds: 61,025,551; Tested Compounds:
2,091,562; Protein Targets: 9,954

 PDB: 113,971
e Chembl
Compound records: 1,715,667, Activities: 13,520,737

Critical: relationships between these entities (cmpdes,
genes, targets..)




Big Data in the public domain:
28 nov 2015
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Involving patients, a lot of additional
data, eg: 350,000 people, 28 million

data points about disease... idem in EU

patientslikeme

Live better, together!™

Making healthcare better for everyone through sharing, support, and research

+ Literature Extraction.....
+personalized medicine...




Some challenges

e Data storage, data curation, data integration,
data sharing, data processing, data
visualization...

e.g., Data-driven decision
making to assist drug
discovery...

New drugs for new
diseases...



USPC “chemistry-drugs”: some
examples

* One project that could be done: Large scale 3D Virtual ligand screening in
MTi + biostat + chemoinfo, tools and skills are present — “forces” in 3D in
USPC = help to design new drugs or understand targets...

* One ongoing project:
the Chemprot database =

Chemical protein
(can be linked to the i"tera‘c“'ons/v
project above)

Chemical-phenotype
associations
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reactions..etc, etc... by chemists, biochemists, clinicians... integrated with
the help of computer scientists, mathematicians, bio-chemoinfo teams....”
This will have to be coordinated and linked to national and international
projects



USPC : Prokaryote candidate peptidome
Bactpepdb.rpbs.univ-paris-diderot.fr

* |dentify candidate peptides from large survey: Built over re-analysis of all
prokaryote genomes for short ORFs (+ RBS) 10-80 amino-acids. Over
2,000,000 candidate peptides from over 2300 genomes.

Some numbers about the database : 557 genera
1252 species
o =rets 2369 strains
; alpeusiogen 1598 plasmids
g = Entiy-overlapping 1,834,816 peptides

o
© 30000
[

2 263,000 with SS bonds
HH“” il (i | ” | 173,000 with TM
0 |||||||||||||||||||||||||||||||| il segments
10 80 30,000 with signal peptide
¢ length 112,000 are conserved
across families of an order

* Challenges: Large scale 3D modelling, large scale prediction of target-peptide
interactions, peptide sequence optimisation for better affinity/specificity.




Infrastructures for structural
bioinformatics
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Protein (comparative / de novo) modeling, complex modeling, virtual screening (chemicals, peptides)




Needs for infrastructures
(storage, cpu)

* Warning: Big data centralized storage area NOT EFFICIENT due to network bandwidth
limitations.

* Warning: better to FAVOR VERSATILE CALCULATION RESSOURCE. Bioinformatics
mixes parallel, distributed, sequential calculation, possibly requiring specific banks =>
heterogeneous resource (big memory nodes, GPU nodes, manycores nodes, ...)

* Warning: evolution of methods is rapid => need for FLEXIBLE DEPLOYMENT

SCHEMES. (E.g. France Grille, Genci do not make easy to deploy own
softwares)

* PAAS: Docker / slurmm / lustrefs, presently ~960 cores, 3x30 Tb storage.

(e.g. calculation of molecular descriptors for over 20,000,000 compounds took 2
months)

. Blg Data projections:
Increase size of calculation resource (e.g. x 3)
— Favor GPU when possible (e.g. MD / Gromacs)

— Expected need for storage (modelome, interactome, screening collections, dynameome,...) up
to several hundreds To.



Bioinformatics in SPC

- 88 teams ou people: — Well-identified bioinformatics teams

From methodologies to biology — Strengths as well for methodological
aspects as applications

and medical sciences
— Multidisciplinary collaborations
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Teaching in Bioinformatics in SPC
And Science of Data

Programming, Machine Learning and Biostatistics

Two Masters : Strong expertise in Structural Bioinformatics

* Biology-Informatics/Bioinformatics: strong participation of P7
Informatic department

* In Silico Drug Design « IsDD »: link with chemistry department

DU Bioinformatics: to be renewed
10 FC: modules

Modules in Doctoral Schools




e Merci de votre attention



Big Data Bioinformatic strategie

¢ Blg Biological Data: remarkable example by Yuan and her colleagues [5].

They found that very diverse outputs are often generated when the same gene expression
data is analyzed using different algorithms, i.e., low overlap and substantial false positives. The
problem results from the extreme heterogeneousness of gene expression data and there is no
guarantee that a pure statistical model will solve it.

A recent effort was made to present a methodology, aimed to circumvent the limitations of
pure statistical models and general gene expression data analysis strategy.

The method was based on a simple biological assumption: “If a number of genes that are
conservatively co-expressed emerge as a dynamically-cooperative group across certain
biological processes, these genes are most likely functionally closely related with
physiological and pathological processes’’ [5].

Then, according to this “hypothesis’’, the data mining is just to be converted to finding those
gene clusters with strongly cooperative and conservative properties across cancer progression
stages



