Les Exoplanètes et la quête d'une biologie extraterrestre

Amaury Triaud

www.amaurytriaud.net

quelques dates

1781: découverte d'Uranus

1846: découverte de Neptune

1989: découverte de HD 114762b (10 Mjup)

1992: corps planétaires en orbite autour du pulsar PSR 1257+12

1995: découverte de 51 Peg b

1999: première planète en transit: HD 209458b

2016: 2087 planètes identifiées, 3000+ candidats

vitesses radiales

Newton 1704; Pink Floyd 1973

le Soleil selon Kurucz

Terre = 9 cm/s en 1 an

Jupiter = 10 m/s en 11 ans

l'effet Doppler

les planètes avec une masse mesurée

period (year)

exoplanet.eu

la méthode du transit

le transit de Vénus

Winn 2010

diagramme mass/rayon

Berta-Thomson 2013

l'effet Rossiter-McLaughlin

Gaudi & Winn 2007

des planètes alignée, d'autre misalignée

Triaud et al. 2009

Queloz et al. 2010

charactérisation des atmosphères

Yan et al. 2014

notre signal, perdu

le transit de Vénus

planète plus grosse, en bleu

GJ 1214b

Berta et al. 2012

pectroscopie d'émission

spectroscopie d'émission

la lueur cendrée

spectroscopie d'émission

WASP-19b

Anderson et al. 2013

courbe de phase

* transit

Knutson et al. 2012

carte en ID

Knutson et al. 2012

carte spectrale

Stevenson 2014

carte en 2D

de Wit et al. 2011

une nuit normale, Cerro Paranal, Chili

diagramme mass/rayon

10⁰ 10 (solar radii) Radius 닄0.1 ╡0.01 10⁶

Berta-Thomson 2013

la taille compte!

adapted from Triaud et al. 2013c

à la recherche de planète transitant des naines brunes

observations proposées pour Spitzer

données réelles, plantes simulées

Triaud et al. 2013c

le télescope spatial James Webb

signal atmospherique d'une Terre orbitant une naine brune

Selsis & Leconte (priv. com.)

notre seule chance de découvrir un environnement habitable, cette décade

SPECULOOS : PI Michaël Gillon

adapted from Triaud et al. 2013c

plus de 1000 naines froides sont connues dans le voisinage solaire

600 d'entres elles seront observées par SPECULOOS

le satellite Kepler a observé ~ 90 systèmes < 0.13 Msol et a identifé 5 planètes dans 2 systèmes

On s'attend de découvrir 10+ systèmes planétaires dont les planètes rocheuses seront étudiées en détails par le /WST et les ELTs

des environnements, différents du nôtre

un mode différent de formation planétaire une irradiation différentes, plus dans l'infrarouge et l'UV des planètes synchrones?

des planètes aux paramètres optimaux pour des investigations atmosphériques l'opportunité d'étudier l'habitabilité dans des conditions non-terrestre

 \mathbf{A}

L. Rudaux, 1937

les exoplanètes montrent une grande variété

la plupart des systèmes sont différents du notre

les modèles peinent à former des planètes alors la Nature nous dit que c'est simple

on pourra bientôt étudier la composition atmosphérique de planètes similaires à la Terre.

WASP-Genève collaboration

Gillon, Pollacco, Collier-Cameron, Queloz, Hellier, Smalley, Maxted, West, Ségransan, Hebb, Anderson, Jehin, Simpson, Brown, Lendl, Udry, Mayor...

friends & competitors

Winn, Narita, Johnson, Bouchy, Hébrard, Moutou, Hirano, Albrecht

the brown dwarf connection Selsis, Gillon, Winn, Artigau, Delorme, Helling, Radigan, Doyon, Laughlin, Raymond, Seager, Demory, Littlefair, Bolmont, Forveille, Leconte, Albert

Gillon, Queloz, Almleaky, Jehin, Demory, Van Grootel

David V. Martin

SPECULOOS

L. Rudaux, 1937