Highlights and prospectives in neutrino physics

Alberto Remoto

remoto@in2p3.fr

Laboratoire d'Annecy-le-vieux de Physique des Particules

What do we know so far?

Oscillation: a comprehensive summary

FIG. 3: As in Fig. 2, but adding SK at most adding SK at μ and μ and μ and μ

- Δm^2 _{13,} Δm^2 ₂₃
- Sign of Δm²23
- \Box Θ_{23} octant

 \blacksquare \Box \Diamond CP. \Box \Diamond is defined herein of the results. We remind that \Box is defined herein as \Box ³ − (m² $-$ ²)/2, with +∆m² for NH and −∆m² for IH. The CP violating phase is taken in the (cyclic) interval δ/π ∈ [0, 2]. \Box δcp

[\[PRD 89, 093018 \(2014\)\]](http://arxiv.org/abs/1312.2878)

Mass hierarchy?

Mass scale?

Dirac/Majorana?

CP Violation?

Sterile neutrinos?

Mass hierarchy

- Oscillations provides the **amplitude** of the mass splittings but **not the sign**
- The sign of Δm² ₂₁ has been fixed studying solar oscillation
- Two possibility for Δm^2 31: Normal or Inverted

for accelerator neutrino experiments with a shorter baseline such as Hyper-K [87, 88] and

\mathbf{F} is as illustrated in Fig. 2-2 \mathbf{F} It **impacts many important processes** in particle physics, astrophysics and cosmology:

- θ and θ and θ are θ in the reveal when a search in the reveal θ and θ 1. Crucial factor to determine δ_{CP} : degenerate solution depending from MH
- 2. Define target sensitivity for neutrino-less double beta decay
- 3. Neutrino astronomy, Cosmology
- riain of neutrino masses and flavour mixing t_{tot} reduce the significance of the CP measurement. This effect is even more input more input more input more input t_{tot} 4. Critical parameter to understand origin of neutrino masses and flavour mixing

Mass hierarchy via matter effects — the present

Mass hierarchy via matter effects — the future $\frac{C}{\sqrt{2\pi}}$

DUNE: 40 kT LAr TPC @ Sanford, 1.2 MW beam from Fermilab (~1300 km) + Atm.

• 5σ MH for all values of δ_{CP} for \sim 400 kt x MW x y (\sim 4.5 y v_u + 4.5 y anti-v_u) \overline{A} \overline{F} \overline{Y} \overline{Q} \overline{Q} \overline{P} \overline{Y} \overline{Q} **Co** TVITTION AIN VAILLES ON OUP TO PHOUT IN A TWO

Hyper K: 1 MT W. Cherenkov @ Kamioka, Atm. + 1.66 MW beam from JPARC (~300 km)

 3σ MH for sin² θ_{13} > 0.42 (0.43) for NH (IH) in 10 years.

PINGU, ORCA: ν—observatory in Antarctica & Mediterranean sea, high energy atm.

Alberto Remoto

Mass hierarchy via oscillation interference

$$
P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}
$$

-
$$
- \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32})
$$

$$
\Delta_{ij} = \Delta m_{ij}^2 \frac{L}{4E}
$$
 There is a 3% difference in Δm_{31}^2 depending from the MH

$$
\Delta_{m_{31}^2 (lH) \neq \Delta m_{31}^2 (NH)}
$$

Spectral distortion on medium (~50 km) baseline reactor neutrino exp~~exp~~ing the. 8m²/ Δm^2)

contain information on the MH: distinctive features in the frequency (Δm^2) domain

JUNO — 20 kt Liquid Scintillator with 50 km baseline, require 3% energy resolution 3%

Dirac vs Majorana

Mass limits inferred by direct measurement $({}^{3}H$ β -decay $-$ m_v \leq 1 eV) and Indirect observation (Plank 2015 — **Σ**m ≤ 0.2 eV)

- The Higgs coupling is **unnatural**
- **See-saw** as possible explanation but **requires** Majorana neutrinos

- 2νββ decay: $(A, Z) \to (A, Z + 2) + 2e^- + 2\bar{\nu}_e$
- $OVBB$ decay: $(A, Z) \to (A, Z + 2) + 2e^-$

$$
(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z)|M_{0\nu}|^2\eta^2
$$

$$
m_D = \frac{v}{\sqrt{2}} Y_{\nu} \leftarrow Y_{\nu} \approx 10^{-12}
$$

($Y_e \sim 0.3 \times 10^{-5}$)

$$
\langle m_{\beta\beta}\rangle = \left|\sum_i U_{ei}^2 m_i\right|
$$

Related to oscillation parameters and **mass hierarchy**

5 years time scale:

- \bullet M \sim 10 50 kg of $\beta\beta$ isotope
- Background level 10⁻³ cts. /(keV kg y)
- Explore quasi-degenerate region

10 years time scale:

- \bullet M \sim 100 kg 1t of $\beta\beta$ isotope
- Background level 10⁻⁴ cts. /(keV kg y)
- Approach Inverse Hierarchy region

CUORE, Gerda, Majorana, Lucifer, AMORE, NEXT, COBRA, EXO, SNO+, KamLAND-Zen, CANDLES, SuperNEMO, ...

Alberto Remoto

Alberto Remoto

CP violation in the lepton sector $\begin{array}{ccc} \hline \end{array}$ Chapter 3: Long-Baseline Neutrino Oscillation Physics 3–29

- Big-bang: symmetry between matter and antimatter
- Matter is dominant in the universe right $now \rightarrow$ asymmetry
- **CP violation in baryon sector**₂ is not enough **12 DUNE CPV Sensitivity**
- **1 CP violation in the lepton sector** ${}_{3}^{Normal\,Hierarchy}$
 10.085 10.085 10.085 *leptogenesis* **→ might explain ^{strie}rretht** asymmetry **8 Normal Hierarchy**
- DUNE/HyperK experiments aim to measure δ _{CP} with long baseline \sim **= 6**
	- Cover $> 50\%$ δ_{CP} values @ 5σ in ~10 y **4**
	- Cover > 75% δ_{CP} values @ 3σ in ~10 y

Exposure (kt-MW-years) 0 200 400 600 800 1000 1200 1400 0

Sterile neutrino

- Reactor anti-ve disappearance at very-short baseline
- LSND & MiniBooNE: ν_e appearance at high Δm² (not covered in this talk) — SBN program @ FNAL
- **Additional neutrinos** may explain the anomalies
- LEP data constrain number of active neutrino: the additional neutrinos must be sterile

Sterile neutrino — what's going on? (ve disappearance) source can pair α being used to confirm the energy scale calibration performance calibration performed with the energy scale calibration performed with the energy scale calibration performed with the energy scale calib

Search for v_e disappearance at veryshort baseline with ND280 @ T2K

Analysis still statistical dominated.

@ accelerator $\qquad \qquad |$ @ very short baseline rector neutrino experiment

 $STEREO,$

 \mathcal{L} Segmented Gd-doped LS

Finally search will be performanced.

Sood energy resolution, low S/B ration. One year of this year. One year of this year. One year of the use of the use of the use of the use of the u ration hypothesis, computed by the null oscillation hypothesis, computed by \mathcal{L} using a profile likelihood ratio as a test statistic, is 0.085.

> The full take data from a will take data for the internet version of the impact of the internet version of the i
The impact of three years, providing a world-leading and version of the internet on the internet on the inter Data expected from summer 2016 sin² ²θμμ in the ³ ^þ ¹ model. For sin² ²θμμ between 0 and

SoLid,

amented Gd-doped LS highly segmented plastic scintillator f_{eff} + 6 LiF:ZnS(Ag)

initial search. The additional tonne of detector mass with an improved energy resolution will be a strategy re

Deployment of a 2t detector from summer 2016

 \mathcal{F} is the sensitivity that the second the solid ex-**Example 12** and the energy energy dominate the 511 keV and \overline{a} tion *γ*-rays is also deposited with the cube. | Projection of sensitivity dominated by background assumption

Alberto Remoto FIG. 6 (color online). The T2K confidence interval in the

Conclusions

Mass Hierarchy is at hand:

- If we're lucky (i.e. NH and $\delta_{CP} = \pi/2$) NOvA + T2K will provide an answer at 3 σ in the next \sim 5 years
- If we're unlucky we have to wait $~10$ years for a 3-40 from JUNO, DUNE, HyperK. 15-20 year for a definitive 5σ.

MH will help boost (or discourage) future generation 0**νββ** experiments:

- IH region in the next 10 years
- NH no sensitivity (for the moment)

δ_{CP} will follow after MH measurement:

• Long term effort with DUNE & HyperK, 20-30 year time scale

Search for sterile neutrinos will clarify current (anti-)neutrino anomalies

Next 2-3 years with STEREO, SoLid, T2K and SBN program @ FNAL

Backup

Alberto Remoto

Solar/Atmospheric anomalies

- The Sun is a fusion reactor which emits **ν**^e in great quantity
- 1968 R. Davies first detection of solar neutrinos (v_e + ³⁸Cl \rightarrow ³⁷Ar + e⁻)
- 2/3 of expected **ν**e are missing

The ratio of muon and electron neutrino produced in atmosphere \sim 2

$$
\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}
$$

$$
\downarrow
$$

$$
e^{+} + \nu_{e} + \bar{\nu}_{\mu}
$$

- The ratio is observed to be \sim 1
- **1/2 of expected** $ν_μ$ **are missing**

- Cosmological observations related to mass hierarchy and the mass scale
- Future cosmological probes could unambiguously measure neutrino mass

