Clusters mass measurement using weak lensing

Augustin GUYONNET

LSST France - LPNHE - December 2015

Gravitational lensing

All observables derive from a scalar field : « the projected mass »

$$\nabla_{\theta}^{2}\psi = \frac{8\pi G}{c^{2}}\int \frac{D_{L}D_{LS}}{D_{S}}\rho d\ell$$

Effects on the image of an object (weak regime):

- → Rotation
- → Displacement
- → Magnification
- → Shear

Ellipticity :
$$\epsilon_{gal} = \left(\frac{gm_{xx} - gm_{yy}}{gm_{xx} + gm_{yy}}\right) + i\left(\frac{gm_{xy}}{gm_{xx} + gm_{yy}}\right)$$

Relation between ellipticity and shear : $\epsilon_{gal} = \epsilon_{int} + g$

Shear as a cosmological probe : Cosmic shear

Shear as a cosmological probe : Lensing by clusters of galaxy (I)

Contours of mass distribution

 $\gamma_t = -\left(\gamma_1 \cos(2\theta_c) + \gamma_2 \sin(2\theta_c)\right)$ $\gamma_{\times} = -\gamma_1 \sin(2\theta_c) + \gamma_2 \cos(2\theta_c)$

The signal is strong. Convenient training !

Shear as a cosmological probe : Lensing by clusters of galaxy (II)

Shear as a cosmological probe : Lensing by clusters of galaxy (II)

Lensing at LPNHE + « Weighting the Giants »+ M2C project (M. Arnaud)

	Astier			16AF026					
		Weighing the f_gas	clusters						
		CANADA-FRANCE-HAWAII TELESCOPE							
	Semester : 2016A	Astier			15	BF008	8		
	Abstract	Weighing the f_gas clusters							
	The most massive cluste Universe. The gas-to-tot estimate of Omega_b/Or most robust constraints of								
	total cluster mass estima	Semester : 2015B		Scienc	e Cat. : High-z	universe			
	lensing mass estimates	Abstract	of galaxies provide pe	ark fair complex of the mat	tor contant of th	h-0			
	lensing data, and only 6 Universe. The gas-to-total ma						1		
	galaxies. We here propo	estimate of Omega_b/Ome	^{ega} TW	o proposal:	s subn	nittec	d ar	nd accepted :	
	fgas clusters. Along with	most robust constraints on		iactiva is to	incro	aco ti	ho	sample of cluste	arc
	to 5% precision - a rema	total cluster mass estimate						sample of cluste	510
	parameters from a single	lensing mass estimates for	ra: → 5% U	incertainty (on the	mas	S C	alibration.	
	Telescopes	reduced. Currently, only 12	2 0 <mark></mark>	,				1	
	Telescope	lensing data, and only 6 of	those have 5-filter ima	ging for robust photo-z estin	nates of backgi	round	,		
		faas clusters. Along with fu	ture observations, thes	e data form part of a project	t to determine	Omega m	°		
	Applicants	to 5% precision - a remark	able prospect for the de	etermination of one of the k	ey cosmologica	al			
	Name	parameters from a single e	experiment.						
	Dr Pierre Astier Telescopes					_			
	LUGOVIC VAIL WARDENS	Telescope	Observing mode	Instrume	ents				
	Anja von der Linden		QUO Hogulai	Integacia					
	Prof. Steven Allen	Applicants	Affiliation	Email	Country	Potentia	al		
	Dominique Boutigny		PNHE	pierre estier@io2o2 fr	Empos	observe	er		
The goal is to	contribute by	an	ty of British ia (Physics and my)	waerbeke@phas.ubc.ca	Canada		1		
independent a	analysis chain	for cross-chec	KS.	anja@slac.stanford.edu swa@stanford.edu	United States United States		-		
	Adam Mantz	Dominique Boutigny	CC IN2P3 (CNRS)	boutigny@in2p3.fr	France				
	Dr Douglas Applegate	Mathieu Roman	LPNHE (CNRS)	matthieu.roman@lpnhe.in2p3.fr	France				
	D-4 K-lle	Marc Betoule Augustin Guyonnet	LPNHE (CNRS)	marc.betoule@lpnhe.in2p3.fr auguvonnet@lpnhe.in2p3.fr	France		-		
	Pat Kelly	Jean-Stéphane Ricol	LPSC (CNRS)	ricol@lpsc.in2p3.fr	France				
		Adam Mantz	Kavli Institute for Cosmological Physics	amantz@slac.stanford.edu	United States				
		Dr. Douidas Arolacista	Arraelander Institute for	damle@asta uni boon da	Gormany	+ +	-		

Data reduction pipeline

Impact of the brighter-fatter on the observed shape of a galaxy

Observation

« true » PSF

brighter-fatter

« true » galaxy

Reconstructed ellipticity

quantifying the problem :

Usual parametrization of shear bias

 $\rightarrow \quad \hat{\gamma} = (1+m)\gamma + c$

Impact of a 1% « brighter-fatter » on the LSST

 $\rightarrow m \approx 0.027$

Meanwhile, the requirement is

 $\rightarrow m_{req} \approx 0.003$

Correction at the pixel level for the Subaru Camera

Data reduction pipeline

Simultaneous Astrometry

An astrometric solution is :

a map from pixel coordinates to celestial coordinates (WCS).

The game of simultaneous astrometry is to :

- → Adjust WCS of a series of images,
- → Associate their catalogs of objects,
- → Associate this catalog to an external catalog to fix the sidereal coordinates,
- → Adjust the sidereal positions of common objects and the WCS taking the measurement errors into account.

Why do we want simultaneous astrometry ?

Strong contribution from the centroid bias An error $\delta x_0 \rightarrow$ inflates $gm_{xx} \propto \delta x_0^2$ (Bernstein & Jarvis 2001)

Multiplicative bias as a function of S/N for DES shape pipeline (Gruen et al. 2013) (1304.0764)

S/N of our input catalog

Data reduction pipeline

From the catalogs to science

С

How to measure the ellipticities of the galaxies ?

The mass of the cluster is estimated by fitting the tangential ellipticity of background galaxies with the weak lensing shear profile of a NFW/... halo.

Photometric zero point

Use of the astrometry to match the stars with SDSS catalogs.
→ color transformation between SDSS and Subaru to fit zero point for each CCD and each night (ongoing work).

RO noise ~ 2 ADUs

Rms ~ 0.01 (over a period of 2.5 years) for a few bands and periods, I fail to build a masterflat

equations

\kappa = \frac{\Sigma}{\Sigma_{crit}}

 $\mbox{gamma_1 = \frac{gm_{xx} -gm_{yy}}{gm_{xx} +gm_{yy}}}$

 $gamma_t = - \left(\frac{smma_1 \cos(2 \pm c) + gamma_2 \sin(2 \pm c)}{right}\right)$

 $\times t(r) = 2 \phi \left(\frac{sigma_v}{c} \right)^2 \left(\frac{D_{ls}}{D_s} \right)^{rac{1}{r}}$

\text{An error \$\delta x_0 \rightarrow\$ inflates }

 $\label{eq:linear} \label{eq:linear} \label{eq:$

\epsilon_{gal} = \epsilon_{int} + g