
SRB in the BioEmergences project

Dominique de Waleffe dominique.dewaleffe@denali.be

Denali SA

CC-IN2P3 - Feb 2, 2009

2 The architecture

Partners

- Framework Program 6 project
- Consortium:
 - CNRS Centre De Recherche en Epistémologie Appliquée (CREA) (FRANCE)
 - Institut Curie (France)
 - Slovenska Technicka Univerzita V Bratislave (Slovakia)
 - Universidad de Málaga (Spain)
 - Denali Consulting S.A. (Belgium)
 - European Molecular Biology Laboratory (Germany)
 - University of Bologna (Italy)
 - CNRS CC-IN2P3 (France)
- Project fact sheet on CORDIS:http://tinyurl.com/5yc42k

Project goals

What?

. . .

With the BioEMERGENCES project, we aim at providing an **experimental platform** to observe **in vivo** emergent patterns at various scales and **measure their variability between different individuals** of the same species. This is a strategy towards the measurement of the individual susceptibility to genetic diseases or response to treatments.

The main result expected from BioEMERGENCES is the **specification of a European platform to achieve high throughput measurement** of individual differences and screening of drugs combinations such as bi or tri-therapies.

・ コ ト ・ 一型 ト ・ 目 ト ・

Goals

Team

• Multi-disciplinary team : biologists, mathematicians, engineers, computer scientists

Goals

Team

• Multi-disciplinary team : biologists, mathematicians, engineers, computer scientists

Research

Goals

Team

• Multi-disciplinary team : biologists, mathematicians, engineers, computer scientists

Research

• **Observe:** Using high definition microscopes, capture 4D sets of images of living embryos (Zebra Fish, Sea Urchin,...)

A D > A A P > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Goals

Team

• Multi-disciplinary team : biologists, mathematicians, engineers, computer scientists

Research

- **Observe:** Using high definition microscopes, capture 4D sets of images of living embryos (Zebra Fish, Sea Urchin,...)
- **Transform:** Invent methods to go from images to symbolic representations (lineage trees, contours)

Image: A mathematical states and a mathem

Goals

Team

• Multi-disciplinary team : biologists, mathematicians, engineers, computer scientists

Research

- **Observe:** Using high definition microscopes, capture 4D sets of images of living embryos (Zebra Fish, Sea Urchin,...)
- **Transform:** Invent methods to go from images to symbolic representations (lineage trees, contours)
- **Compare:** Invent methods for efficient and meaningful comparisons

Image: A mathematical states and a mathem

Goals

Team

• Multi-disciplinary team : biologists, mathematicians, engineers, computer scientists

Research

- **Observe:** Using high definition microscopes, capture 4D sets of images of living embryos (Zebra Fish, Sea Urchin,...)
- **Transform:** Invent methods to go from images to symbolic representations (lineage trees, contours)
- **Compare:** Invent methods for efficient and meaningful comparisons

Industrialize

Goals

Team

• Multi-disciplinary team : biologists, mathematicians, engineers, computer scientists

Research

- **Observe:** Using high definition microscopes, capture 4D sets of images of living embryos (Zebra Fish, Sea Urchin,...)
- **Transform:** Invent methods to go from images to symbolic representations (lineage trees, contours)
- **Compare:** Invent methods for efficient and meaningful comparisons

Industrialize

• Platform for high throughput execution of the processes

Gather observations

• Biologists place an embryo under microscope for a number of hours

Gather observations

- Biologists place an embryo under microscope for a number of hours
- a stack of horizontal images of size x * y, separated in time by δt and space by δz are captured

< □ > < 同 >

Gather observations

- Biologists place an embryo under microscope for a number of hours
- a stack of horizontal images of size x * y, separated in time by δt and space by δz are captured
- \bullet a new stack is captured every ΔT

< 17 ▶

Gather observations

- Biologists place an embryo under microscope for a number of hours
- a stack of horizontal images of size x * y, separated in time by δt and space by δz are captured
- a new stack is captured every ΔT
- Repeated for many individuals under different conditions

< 17 > <

Some details

Gather observations

- Biologists place an embryo under microscope for a number of hours
- a stack of horizontal images of size x * y, separated in time by δt and space by δz are captured
- a new stack is captured every ΔT
- Repeated for many individuals under different conditions

Output

- A large set of large files containing raw images:
 - A set of metadata describing the experiment

Reconstruct cell lineage tree

- Invent different algorithms to:
 - filter images (remove noise)
 - detect centers of cell nuclei ((x, y, z) position)
 - determine membrane contours (set of 3-D polygons)
 - determine nucleus contours (set of 3-D polygons)
 - identify mytosis (cell divisions)
 - track individual cell from step T_i to step T_{i+1} and build lineage tree
 - compare lineage trees , infer new results

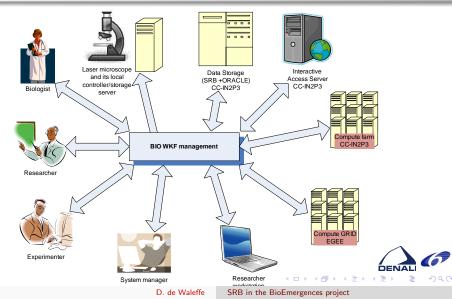
Reconstruct cell lineage tree

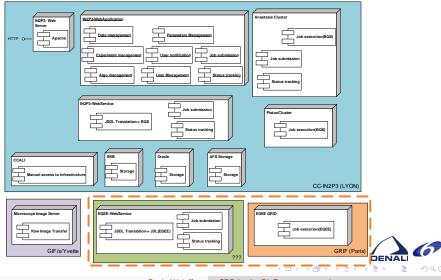
- Invent different algorithms to:
 - filter images (remove noise)
 - detect centers of cell nuclei ((x, y, z) position)
 - determine membrane contours (set of 3-D polygons)
 - determine nucleus contours (set of 3-D polygons)
 - identify mytosis (cell divisions)
 - track individual cell from step T_i to step T_{i+1} and build lineage tree
 - compare lineage trees , infer new results
- visualize reconstructions

Reconstruct cell lineage tree

- Invent different algorithms to:
 - filter images (remove noise)
 - detect centers of cell nuclei ((x, y, z) position)
 - determine membrane contours (set of 3-D polygons)
 - determine nucleus contours (set of 3-D polygons)
 - identify mytosis (cell divisions)
 - track individual cell from step T_i to step T_{i+1} and build lineage tree
 - compare lineage trees , infer new results
- visualize reconstructions
- correct and annotate datasets

Some figures


Image sizes: 512 * 512 * 8 to 1024 * 1024 * 8 pixels. $0.5\mu < \delta x, \delta y < 1.5\mu$, but soon: 2048 * 2048 * 24, Number of images in stack: between 50 and 200, Number of time steps: ΔT typically between 1 and 10 minutes, a few tens to a few hundreds of time intervals captured. Raw data volumes: 50 to 60 Gigabytes of raw image files per experiment (size: 512) but will soon be 1/2 Terabytes with new microscope. Number of cells: lineage trees contains several million cells. Current storage used (SRB): in excess of 8 TB.


Image: A math a math

Context diagram

Deployment viewpoint

D. de Waleffe

SRB in the BioEmergences project

Application: experiment list

Experiments	

ithms Datas Users Admin Website

ddewaleffe Logout

Search for:				L}		Ð	Status:	- All -	1 > of 6 20 of 108 refs	Show				
All	> Name	+ Date	Species	+ Scheme	+ Treatment	Nuclei	Voxel	Volume	> Zsteps	+ Timestep	ΔΤ	> Status	> Operator	
	071019aserie02	19 Oct 2007	paracentrotus lividus	-	RNAinj	0	0.48×0.48×0.96	122.88×122.88×73.92	78	1	1'00"	New	Duloquin Louise	
	071019aserie01	19 Oct 2007	paracentrotus		RNAinj	0	0.48×0.48×0.48	122.88×122.88×73.92	155	1	3'26"	New	Duloquin Louise	۲
	071019aserie00	19 Oct 2007	paracentrotus		RNAinj	0	0.48x0.48x0.48	245.76×245.76×73.92	155	2	3'23"	New	Duloquin Louise	۲
	071019aserie03	19 Oct 2007	paracentrotus		RNAinj	0	0.48×0.48×0.96	245.76×245.76×73.92	78	2	1'00"	New	Duloquin Louise	۲
	070429a	29 Apr 2007	danio rerio	VP6	transg	0	1.37×1.37×1.37	1399.81×1399.81×175.36	129	23	5'13"	New	Peyrieras Nadine	
	070411d	11 Apr 2007	danio rerio	AP5	RNAInj	0	0.8×0.8×0.8	409.6x409.6x149.6	188	23		Sent	Peyrieras Nadine	۲
	070411b	11 Apr 2007	danio rerio	APS	RNAinj	0	0.8×0.8×0.8	409.6×409.6×132.8	167	23	1'02"	New	Peyrieras Nadine	
	070411c	11 Apr 2007	danio rerio	AP5	RNAinj	0	1.37×1.37×1.37	699.9×699.9×138.37	102	29	1'05"	Sent	Peyrieras Nadine	
	080318#F	18 Mar 2008	paracentrotus lividus	6 (19hpf- 24hpf)	RNAinj	0	0.6x0.6x1.2	307.2x307.2x152.4	128	31	2'56"	New	Duloquin Louise	۲
	080312aF	12 Mar 2008	paracentrotus lividus	6 (19hpf- 24hpf)	RNAinj	0	0.6×0.6×1.2	307.2x307.2x152.4	128	31	2'56"	Sent	Duloquin Louise	۲
	071223a	23 Dec 2007	danio rerio	VP8	RNAinj	0	1.37×1.37×1.37	699.9x699.9x162.67	120	33	2'36"	Sent	Peyrieras Nadine	
	070719a	19 Jul 2007	paracentrotus lividus	1 (3h15pf- 7h30pf)		0	0.48×0.48×0.96	246.02×246.02×91.19	96	41	6'00"	New	Duloquin Louise	۲
	060303	03 Mar 2006	danio rerio	AP4	RNAinj	0	0.58×0.58×1.04	296.96×296.96×30.16	30	49		New	Peyrieras Nadine	۲
	070118b	18 Jan 2007	danio rerio	APO	Obait 32H	1	0.68×0.68×2.05	696.32×696.32×190.65	94	55	3'15"	Sent	Maury Benoit	۲
	071227cF	27 Dec 2007	danio rerio	APO	trans+inj	0	1.51×1.51×1.51	773.12x773.12x314.08	209	57	4'41"	Sent	Peyrieras Nadine	
	080123aF	23 Jan 2008	danio rerio	APO	Dbalt 32H	1	1.32×1.32×1.32	673.79×673.79×317.16	242	64	6'13"	Sent	lemesre vincent	1
	070221	21 Feb 2007	danio rerio	AP4	RNAinj	0	0.68×0.68×2.05	696.32×696.32×178.35	88	66	3'47"	Sent	Peyrieras Nadine	۲
	070117a	17 Jan 2007	danio rerio	APO	Obait 32H	1	1.36×1.36×2.32	696.32×696.32×225.04	98	71	4'26"	Sent	Maury Benoit	۲
	070205a	05 Feb 2007	danio rerio	APO	untreated	1	0.68x0.68x2.05	696.32×696.32×166.05	82	72	3'05"	Sent	Maury Benoit	
	080101aF	01 Jan 2008	danio rerio	AP4	RNAIDI	0	1.21×1.21×1.21	619.52×619.52×257.73	214	72	4'47"	Sent	Peyrieras Nadine	

Application: processing pipelines

Details button: brings view below:

								_	-					Display 25	
se	arch						-							Display 25	ot 14 rets
All .	Pip						-	-							
	dra on						- /	-			>>IN2P3	>>EGEE	Stop	Restart	Cance
	dre						1/	-			>>IN2P3	>>EGEE	Stop	Restart	Cance
	pre	Details for Pip	eline drugTre	atment_ZB on 0	31014aF id	328 🔤					>>IN2P3	>>EGEE	Stop	Restart	Cance
	09 pre	Label				Algorithm		Infra	Status	Actio	ons				
	34	p-drugTreatment	_ZB-e-081014a	F-a-GMCF-KS-ITS-I	UC-328	GMCF-KS-ITS-M	EGEE 🚺	🗋 Waiting	ng 💽	>>IN2P3	>>EGEE	Stop	Restart	Cancel	
	pre 34	p-drugTreatment	_ZB-e-081014a	F-a-GMCF-K2-IT5-I	UC-328	GMCF-K2-IT5-N	euc	EGEE	🗋 Waiti		>>IN2P3	>>EGEE	Stop	Restart	Cance
	dra	p-drugTreatment	CenterDetect-C	-	EGEE	New		>>IN2P3	>>EGEE	Stop	Restart	Cance			
	dri on	p-drugTreatment Close	_ZB-e-081014a	F-a-NudeusSegme	ntation-328	NudeusSegmei	ntation	EGEE	New 1		>>IN2P3	>>EGEE	Stop	Restart	Cance
		igTreatment_ZB 081014aF id 328	081014aF	19 Jan 2009	RUNNING	19 Jan 2009 12:14:51	EGEE		Details	Graph	>>IN2P3	>>EGEE	Stop	Restart	Cance
		igTreatment_ZB 081014a id 327	081014a	19 Jan 2009	RUNNING	19 Jan 2009 12:14:11	IN2P3		Details	Graph	>>IN2P3	>>EGEE	Stop	Restart	Cance
	dru on	igTreatment_28 080923aF id 329	080923aF	19 Jan 2009	RUNNING	19 Jan 2009 12:11:53	IN2P3		Details	Graph	Treatment_ZB	-e-081014a	F-a-GMCF	-K2-IT5-NU	IC-328-
	dru on	igTreatment_28 081015aF id 325	081015aF	19 Jan 2009	RUNNING	19 Jan 2009 11:43:02	EGEE		Details	Graph				0	9
	dru on	igTreatment_ZB 080916aF id 324	080916aF	19 Jan 2009	RUNNING	19 Jan 2009 11:42:44	EGEE		Details	Grapt				- Queued (17) Error (3)	3
	on	igTreatment_ZB 080916a id 322	080916a	19 Jan 2009	A RUNNING	19 Jan 2009 11:42:07	EGEE		Details	Graph	Done (1	161)—			1
П	dru	gTreatment_ZB 081015a id 303	081015a	17 Jan 2009	DONE DONE	19 Jan 2009 07:31:56	IN2P3		Details	Graph					

<ロ> <同> <同> < 同> < 同>

• Main repository: cc-in2p3 Lyon.

- Main repository: cc-in2p3 Lyon.
- Raw data storage. Data captured in Paris, format standardized, then copied to SRB. Srsync is used.

- Main repository: cc-in2p3 Lyon.
- Raw data storage. Data captured in Paris, format standardized, then copied to SRB. Srsync is used.
- Derived data.

- Main repository: cc-in2p3 Lyon.
- Raw data storage. Data captured in Paris, format standardized, then copied to SRB. Srsync is used.
- Derived data.
 - Kept for reuse in further processing.

- Main repository: cc-in2p3 Lyon.
- Raw data storage. Data captured in Paris, format standardized, then copied to SRB. Srsync is used.
- Derived data.
 - Kept for reuse in further processing.
 - Data history kept in application's DB.

- Main repository: cc-in2p3 Lyon.
- Raw data storage. Data captured in Paris, format standardized, then copied to SRB. Srsync is used.
- Derived data.
 - Kept for reuse in further processing.
 - Data history kept in application's DB.
- Some additionnal files (movies of reconstructions,...)

- Main repository: cc-in2p3 Lyon.
- Raw data storage. Data captured in Paris, format standardized, then copied to SRB. Srsync is used.
- Derived data.
 - Kept for reuse in further processing.
 - Data history kept in application's DB.
- Some additionnal files (movies of reconstructions,...)
- Stores algorithms (scripts, sources, builds procedures, executables)

- Main repository: cc-in2p3 Lyon.
- Raw data storage. Data captured in Paris, format standardized, then copied to SRB. Srsync is used.
- Derived data.
 - Kept for reuse in further processing.
 - Data history kept in application's DB.
- Some additionnal files (movies of reconstructions,...)
- Stores algorithms (scripts, sources, builds procedures, executables)

Yearly Graph (1 Day Average) 9.2 TB 2009-01-28 08:39:01 CC-IN2P3 copyright (TK) space 6.9 TB RB disk 4.6 TB 2.3 TB 0.0 TB Dec May Jun Jul Aug Sep Oct Nov Dec Oct Nov .lan Feb Man Apr Max Average Current pace used: 9059.0 GB 3747 0 GB 9059 0 GB • • • • • • • •

D. de Waleffe

SRB in the BioEmergences project

• Used in identical manner from both farms.

- Used in identical manner from both farms.
- Mostly used as a file system

- Used in identical manner from both farms.
- Mostly used as a file system
- Command line: Smkdir, Scd, Sls, Sput, Sget, Srm, Srsync

- Used in identical manner from both farms.
- Mostly used as a file system
- Command line: Smkdir, Scd, Sls, Sput, Sget, Srm, Srsync
- Jargon library used for

- Used in identical manner from both farms.
- Mostly used as a file system
- Command line: Smkdir, Scd, Sls, Sput, Sget, Srm, Srsync
- Jargon library used for
 - displaying raw data file lists

- Used in identical manner from both farms.
- Mostly used as a file system
- Command line: Smkdir, Scd, Sls, Sput, Sget, Srm, Srsync
- Jargon library used for
 - displaying raw data file lists
 - Streaming movies [todo]

- Used in identical manner from both farms.
- Mostly used as a file system
- Command line: Smkdir, Scd, Sls, Sput, Sget, Srm, Srsync
- Jargon library used for
 - displaying raw data file lists
 - Streaming movies [todo]
- Not used in the project:

- Used in identical manner from both farms.
- Mostly used as a file system
- Command line: Smkdir, Scd, Sls, Sput, Sget, Srm, Srsync
- Jargon library used for
 - displaying raw data file lists
 - Streaming movies [todo]
- Not used in the project:
 - user meta data

- Used in identical manner from both farms.
- Mostly used as a file system
- Command line: Smkdir, Scd, Sls, Sput, Sget, Srm, Srsync
- Jargon library used for
 - displaying raw data file lists
 - Streaming movies [todo]
- Not used in the project:
 - user meta data
 - web based browser

• Slow access when doing operations requiring catalog access (e.g. Sls -1).

- Slow access when doing operations requiring catalog access (e.g. Sls -1).
- Bizarre error messages, or no exit codes (makes it difficult in scripts)

- Slow access when doing operations requiring catalog access (e.g. Sls -1).
- Bizarre error messages, or no exit codes (makes it difficult in scripts)
- Locking bugs (multiple e.g. Smkdir X) which impact the whole group!

- Slow access when doing operations requiring catalog access (e.g. Sls -1).
- Bizarre error messages, or no exit codes (makes it difficult in scripts)
- Locking bugs (multiple e.g. Smkdir X) which impact the whole group!
- deleted stuff is not always fully deleted

• Post-processing on ingestion. Could trigger raw data format changes on upload.

- Post-processing on ingestion. Could trigger raw data format changes on upload.
- Workflows. Probably redundant with what we already have or can have.

- Post-processing on ingestion. Could trigger raw data format changes on upload.
- Workflows. Probably redundant with what we already have or can have.
- Looks like iRODS would be a good fit but:

- Post-processing on ingestion. Could trigger raw data format changes on upload.
- Workflows. Probably redundant with what we already have or can have.
- Looks like iRODS would be a good fit but:
 - we have no extra budget in current project

- Post-processing on ingestion. Could trigger raw data format changes on upload.
- Workflows. Probably redundant with what we already have or can have.
- Looks like iRODS would be a good fit but:
 - we have no extra budget in current project
 - team is currently looking at using ROOT as storage framework

Why iRODS?

- Post-processing on ingestion. Could trigger raw data format changes on upload.
- Workflows. Probably redundant with what we already have or can have.
- Looks like iRODS would be a good fit but:
 - we have no extra budget in current project
 - team is currently looking at using ROOT as storage framework
 - taking advantage of iRODS imply large re-architecting effort

Image: A mathematical states and a mathem

Why iRODS?

- Post-processing on ingestion. Could trigger raw data format changes on upload.
- Workflows. Probably redundant with what we already have or can have.
- Looks like iRODS would be a good fit but:
 - we have no extra budget in current project
 - team is currently looking at using ROOT as storage framework
 - taking advantage of iRODS imply large re-architecting effort
- sources available.

Image: A mathematical states and a mathem

Why iRODS, some risks?

• maintainability of complex rule base?

Why iRODS, some risks?

- maintainability of complex rule base?
 - rule syntax (one liners, readability, choices of operators, comments?)

```
myRule | foo == 1 | action 1(...); action 2(...); ... | action 3(...); action 4(...); ...
```


Why iRODS, some risks ?

- maintainability of complex rule base?
 - rule syntax (one liners, readability, choices of operators, comments?)

```
myRule|foo==1|action1(...);action2(...);...|action3(...);action4(...);...
```

• Why not sligthly more verbose

```
rule myRule { //this rule is triggered when foo and does bar
when ( foo == 1)
do {
    /* watch that this action has side-effects */
    action1(...);
    action2(...);
    on failure {
    action3(...);
    action4(...);...
    }
}
```


Why iRODS, some risks?

- maintainability of complex rule base?
 - rule syntax (one liners, readability, choices of operators, comments?)

```
myRule|foo==1|action1(...);action2(...);...|action3(...);action4(...);...
```

• Why not sligthly more verbose

```
rule myRule { //this rule is triggered when foo and does bar
when ( foo == 1)
do {
    /* watch that this action has side-effects */
    action1(...);
    action2(...);...
}
on failure {
    action3(...);
    action4(...);...
}
```

• can I define new microServices as complex jobs (e.g submit job(s) to farm) without going to C programming?

Conclusion

• BioEmergences has complex distributed data/processing needs

D. de Waleffe SRB in the BioEmergences project

Conclusion

- BioEmergences has complex distributed data/processing needs
- Could make use of iRODS if risks are shown to be a non issue

Questions?

