BEH fermionic decays and combination

Lidia Dell'Asta
Boston University
on behalf of the ATLAS and CMS Collaborations

Rencontres de Moriond - Electroweak Session
12-19.March. 2016

- Higgs boson production and decay
- Fermionic decays
- $\mathrm{H} \rightarrow$ TT
- $\mathrm{H} \rightarrow \mu \mu$ and $\mathrm{H} \rightarrow$ ee
- Lepton flavor violating decays
- $\mathrm{H} \rightarrow \mathrm{bb}$
- ATLAS + CMS combination
- Conclusions

BR for the decay of Higgs boson into fermions.

$\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$	$\mathrm{H} \rightarrow \mathrm{bb}$	$\mathrm{H} \rightarrow \mathrm{TT}$	$\mathrm{H} \rightarrow \mu \mu$
BR	57.7%	6.32%	0.0219%

Trying to answer the question: what did we learn from the search and study of fermionic Higgs decays?

Disclaimer: covering here ~ 20 papers! No time to go through analysis details...

Lidia Dell'Asta

\square or a break!

Channel	Signal strength $[\mu]$		Signal significance $[\sigma]$	
	from results in this paper (Section 5.2)			

Lidia Dell'Asta

Looking at different production modes...

$$
\begin{gathered}
\mu_{g g F}^{\tau \tau}=2.0 \pm 0.8(\text { stat. }){ }_{-0.8}^{+1.2}(\text { syst. }) \pm 0.3(\text { theory syst. }) \\
\mu_{\mathrm{VBF}+V H}^{\tau \tau}=1.24_{-0.45}^{+0.49}(\text { stat. }){ }_{-0.29}^{+0.31}(\text { syst. }) \pm 0.08(\text { theory syst. })
\end{gathered}
$$

obs (exp) signal significance @ 125 GeV : ggF: I.74 (0.95б) VBF + VH: 2.25 σ (I.72 σ)

Lidia Dell'Asta

[Also bosonic decays included here!]

CMS, $4.9 \mathrm{fb}^{-1}$ at $7 \mathrm{TeV}, 19.7 \mathrm{fb}^{-1}$ at 8 TeV

Lidia Dell'Asta
Best fit μ
new

Look for CP-violating HVV couplings.

- Runl studies in decay $H \rightarrow W W$ and $H \rightarrow Z Z$ and differential cross sections of $H \rightarrow \gamma \gamma$ in EFT: no deviations from the SM.
- New: use VBF production, perform direct test of CP-invariance.
- Possible signs of CP-odd contribution: clear indication of new physics.
- CP-mix parametrized in terms of \tilde{d} parameter.
- Optimal Observable (OO): combines information into single variable.
- CP-odd observable.

- Highest sensitivity for small values of parameter of interest.

$$
O O=\frac{2 \operatorname{Re}\left(\mathcal{M}_{\mathrm{SM}}^{*} \mathcal{M}_{\mathrm{CP} \text {-od })}\right.}{\left|\mathcal{M}_{\mathrm{SM}}\right|^{2}}
$$

with: $\quad \mathcal{M}=\mathcal{M}_{\mathrm{SM}}+\tilde{d} \cdot \mathcal{M}_{\mathrm{CP} \text {-odd }}$

Considering CP-odd contributions, effective Lagrangian can be written as:
$\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\tilde{g}_{H A A} H \tilde{A}_{\mu \nu} A^{\mu \nu}+\tilde{g}_{H A Z} H \tilde{A}_{\mu \nu} Z^{\mu \nu}+\tilde{g}_{H Z Z} H \tilde{Z}_{\mu \nu} Z^{\mu \nu}+\tilde{g}_{H W W} H \tilde{W}_{\mu \nu}^{+} W^{-\mu \nu}$
...and couplings can be parametrized as:

$$
\begin{array}{ll}
\tilde{g}_{H A A}=\frac{g}{2 m_{W}}\left(\tilde{d} \sin ^{2} \theta_{W}+\tilde{d}_{B} \cos ^{2} \theta_{W}\right) & \tilde{g}_{H A Z}=\frac{g}{2 m_{W}} \sin 2 \theta_{W}\left(\tilde{d}-\tilde{d}_{B}\right) \\
\tilde{g}_{H Z Z}=\frac{g}{2 m_{W}}\left(\tilde{d} \cos ^{2} \theta_{W}+\tilde{d}_{B} \sin ^{2} \theta_{W}\right) & \tilde{g}_{H W W}=\frac{g}{m_{W}} \tilde{d} .
\end{array}
$$

OO performs better than $\operatorname{sign} \Delta \varphi(\mathrm{j}, \mathrm{j})$.
\tilde{d} outside $[-0.11,0.05]$ excluded at 68% C.L..
This 68% C.L. limit is a factor 10 better than the one from the ATLAS $\mathrm{H} \rightarrow \mathrm{WW} / Z Z$ combined CP analysis.

In the SM, lepton flavor violating (LFV) decays are forbidden. If the theory is re-normalizable up to a finite mass scale, LFV couplings may be introduced.
LFV decays can occur naturally in several BSM models.

LFV decay: limits on $B R$

$$
\begin{aligned}
& \mathrm{BR}(\mathrm{H} \rightarrow \mu \mathrm{e})<\mathrm{O}\left(10^{-8}\right) \\
& \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{Te})<\mathrm{O}(10 \%) \\
& \mathrm{BR}(\mathrm{H} \rightarrow \mathrm{~T} \mu)<\mathrm{O}(10 \%)
\end{aligned}
$$

- Signature very similar to SM H \rightarrow TT decays, but:
- lepton from LFV Higgs decay tends to have a larger momentum than in SM case
- neutrinos are collinear with the tau decay products.
- Event categorization based on m_{T} (ATLAS) or number of jets (CMS).
- Fit of T+lepton collinear mass or MMC.

Channel summary: CMS \& ATLAS
Lidia Dell'Asta

	e	μ
$\mathrm{T}_{\mathbf{l}}$	$\mathrm{T}_{\mu} / \checkmark$ new	$\mathrm{Te}_{\mathrm{e}} / \checkmark$ new
T_{h}	$\checkmark \checkmark$ new	$\checkmark \checkmark$

observed 95\% CL upper limit on BR:
$\operatorname{Br}(\mathrm{H} \rightarrow \mu \mathrm{T})<\mathrm{I} .85 \%$

observed 95\% CL upper limit on BR:
$\operatorname{Br}(\mathrm{H} \rightarrow \mu \mathrm{T})<1.51 \%$

n@w

observed 95\% CL upper limit on BR:
$\operatorname{Br}(\mathrm{H} \rightarrow \mathrm{e} T)$ < 1.04% $\operatorname{Br}(\mathrm{H} \rightarrow \mu \mathrm{T})<\mathrm{I} .43 \%$

First direct test of interaction of the Higgs boson with the quark sector, as the coupling to the top quark has only been tested through loop effects.

Lidia Dell'Asta

- Inclusive search for $\mathrm{H} \rightarrow \mathrm{bb}$ not feasible at hadron colliders because of the overwhelming background from multi-jet production.
Associated production offers a viable alternative (can use leptons from W/Z for triggering and background suppression).
- Event categorization based on lepton, jet and b-tagged jet multiplicities.

Lidia Dell'Asta
14

- The fully hadronic channel has the highest BR but the least signal purity.
- Event categorization based on number of jets and b-tagged jets.
Multivariate analysis.
- Data-driven method for the extraction of main background from multi-jet events, using data sample with same jet multiplicity but lower b-tagged jet multiplicity.

Full Runl data sample: $5 \mathrm{fb}^{-1}$ at 7 TeV and $20 \mathrm{fb}^{-1}$ at 8 TeV .
Using $\mathrm{gg} \rightarrow \mathrm{H} \rightarrow \mathrm{ZZ}$ as a reference:
$\sigma_{i} \cdot B R^{f}=\sigma(g g \rightarrow H \rightarrow Z Z) \times\left(\frac{\sigma_{i}}{\sigma_{g g F}}\right) \times\left(\frac{B R^{f}}{B R^{Z Z}}\right)$

$\mid \mathrm{VH}: 3.5 \sigma$ significance (4.2σ exp.)
2.4σ excess over SM prediction for ttH $(4.4 \sigma$ obs. and 2.0σ exp.)

$$
\mu_{i}^{f}=\frac{\sigma_{i} \cdot B R^{f}}{\left(\sigma_{i}\right)_{S M} \cdot\left(B R^{f}\right)_{S M}}=\mu_{i} \times \mu^{f}
$$

Production modes

Production process	ATLAS+CMS	ATLAS	CMS
μ_{ggF}	$1.03_{-0.15}^{+0.17}$	$1.25_{-0.21}^{+0.24}$	$0.84_{-0.16}^{+0.19}$
μ_{VBF}	$1.18_{-0.23}^{+0.25}$	$1.21_{-0.30}^{+0.33}$	$1.13_{-0.34}^{+0.37}$
$\mu_{W H}$	$0.88_{-0.38}^{+0.40}$	$1.25_{-0.52}^{+0.56}$	$0.46_{-0.54}^{+0.57}$
$\mu_{Z H}$	$0.80_{-0.36}^{+0.39}$	$0.30_{-0.46}^{+0.51}$	$1.35_{-0.54}^{+0.58}$
$\mu_{t t H}$	$2.3_{-0.6}^{+0.7}$	$1.9_{-0.7}^{+0.8}$	$2.9_{-0.9}^{+1.0}$

$$
\mu=1.09_{-0.10}^{+0.11}=1.09_{-0.07}^{+0.07}(\text { stat }){ }_{-0.04}^{+0.04}(\mathrm{expt}){ }_{-0.03}^{+0.03}(\text { thbgd })_{-0.06}^{+0.07}(\text { thsig })
$$

- Coupling modifiers have been proposed to interpret the LHC data using specific modifications of the Higgs boson couplings related to new physics beyond the SM.
- "k-framework":
- assuming exactly same coupling structure as SM,
- modify couplings with LO degrees of freedom.

$$
\begin{aligned}
\sigma_{i} & =\kappa_{i}^{2} \cdot \sigma_{i}(\mathrm{SM}) \\
\Gamma_{f} & =\kappa_{f}^{2} \cdot \Gamma_{f}(\mathrm{SM})
\end{aligned}
$$

$\mu_{i}^{f}=\frac{\sigma_{i} \cdot B R^{f}}{\sigma_{i}(\mathrm{SM}) \cdot B R^{f}(\mathrm{SM})}=\frac{\kappa_{i}^{2} \cdot \kappa_{f}^{2}}{\Gamma_{\mathrm{H}} / \Gamma_{\mathrm{H}}(\mathrm{SM})}$

- Changes in the couplings will result in a variation of the Higgs boson width.
- Assume no BSM contribution or allow additional BSM contribution to the width.
- Two scenarios considered:
- $B R(B S M)=0$
- $k_{V} \leq I$ and $B R(B S M)$ free
- upper limit of 0.34 at 95% CL is obtained for BR(BSM).

Lidia Dell'Asta

- The search for Higgs fermionic decays is an essential piece of the Higgs puzzle.
$-H \rightarrow$ TT decays have been observed.
- Many measurements in this final state were done on Run I data, looking at different production modes.
- A new method to check the CP invariance in the VBF production has been established.
$-H \rightarrow \mu \mu$ and $H \rightarrow b b$ have been looked for.
- More data is needed for an observation.
- Lepton flavor violating decays have been looked for and new upper limits on $\operatorname{Br}(\mathrm{H} \rightarrow \mathrm{et})$ and $\mathrm{Br}(\mathrm{H} \rightarrow \mu \mathrm{T})$ have been set.
- Runl data gave us the Higgs.
- Run2 will give us the opportunity to explore it even more.

