Final states with third generation quarks at 13 TeV

Pieter Everaerts

University of California, Los Angeles

On Behalf of the ATLAS and CMS collaborations

March 17, 2013

Pieter Everaerts

Searches with 3rd generation quarks

March 17, 2013

Motivation

- Top quark radiative corrections to Higgs mass can be canceled by new particles:
 - Top squarks in supersymmetry
 - Vector-like quarks in Composite Higgs Models

- Those particles would decay into Standard Model (SM) top and bottom quarks
- Other new physics theories suggest that new gauge interactions with enhanced couplings to third generation quarks
 - W', Z', axigluons, pseudoscalar Higgs bosons,...
 - Searched for resonances in $t\overline{t}$ or tb invariant mass

Pieter Everaerts

Improvements at 13 TeV

- At 13 TeV probing higher masses:
 - Further developing targeted selections for boosted top quark decays:
 - Top-tagging, W-tagging, Higgs-tagging for the hadronic final states
 - Dedicated isolation variables with smaller isolation cones or using the relative momentum between the lepton and closest jet
 - Other backgrounds increase in importance and require new datadriven techniques:
 - E.g. new data-driven method for ttZ using ttγ events for ATLAS 1I stop search
 - Dedicated single top control regions
 - Also trying to cover difficult corners

Searches with 3rd generation quarks

March 17, 2013 3

Supersymmetry searches

Top squark pair production

- Bottom squark pair production with $\tilde{b} \rightarrow b \chi_1^0$ decay
- Gluino induced top pair production in talk from Henning Kirschenmann
 - Dedicated model from ATLAS with $\Delta M(\tilde{t}, \chi_1^0)$ =5 GeV

Pieter Everaerts

Search for bottom squarks

- Final state: 2 bottom quarks, no leptons, MET>250 GeV
- Veto events with \geq 4jets
- Two dedicated SRs:
 - For large $\Delta M(\tilde{b}, \chi_1^0)$:
 - two leading jets b-tagged,
 - M_{bb}>200 GeV
 - M_{CT}>250,350,450 GeV

$$m_{CT}^2(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2$$

- For small $\Delta M(\tilde{b}, \chi_1^0)$:
 - leading, high p_T (>300 GeV), non b-tagged ISR jet
 - Higher MET cut, with MET opposite to leading jet
- Background prediction
 - Z+jets: 2l CR with SFOS, 76<M(ℓ,ℓ)<106 GeV

 - Single-top and W+jets for non-compressed

Pieter Everaerts

March 17, 2013 5

All-hadronic stop search

- Final state is $t\overline{t}$ +MET ($\tilde{t} \rightarrow t\chi_1^0$ decay)
- Exploit differences in b-jet multiplicity, top-tagging, (against EWK), Δφ(jets, MET) (against QCD) and the MET spectrum (against tt)
 - Use M_T(b,MET) or M_{T2} binning to discriminate further against tt
- Lost lepton background from 1l CR using data-MC SFs
- Z+jets: normalization from 2l CR, binning in MET, MT(b, MET), N_{jet}...from γ+jets CR or loose Z+jets selection
- Multi-jet background: estimate background in CR created by inverting the cut on Δφ(jets, MET)
- ttZ from simulation

March 17, 2013

6

Searches with 3rd generation quarks

CMS-SUS-16-007

Pieter Everaerts

Single-lepton stop search

- Selection:
 - 1 e/ μ and large MET
 - At least one b-tagged jet (suppress EWK bkgs)
 - Large M_T (suppress W+jets and $t\bar{t} \rightarrow 1l$)
 - No extra e/ μ/τ (against t $\overline{t} \rightarrow 2I$)
 - Extra kinematic cuts to reduce $t\bar{t} \rightarrow 2l$:
 - Asymmetric M_{T2} , topness, M_{T2}^W
 - Binning used for low $\Delta M(t, \chi_1^0)$ (CMS)
 - At least 4 jets for bulk of T2tt
 - $t\bar{t} \rightarrow 2l$ only has two jets without ISR
 - Loosened for alternative models and boosted scenario (CMS)
 - Large-R jets and higher MET cuts (ATLAS) used for high stop masses
 - Target boosted tops

Single-lepton stop search

ATLAS-CONF-2016-007

- Major backgrounds estimated from dedicated control regions
 - Single top (STCR), tt (TCR), W+Jets (WCR)
- Extra checks in validation regions
 - E.g. 2l CR for $t\overline{t} \rightarrow 2l$
- Also $t\overline{t} \gamma$ to predict $t\overline{t} Z$

- 2.3σ excess in SR1
 - Region with moderate MET cut and no large R-jets, optimized for heavy neutralino masses

Pieter Everaerts

Single-lepton stop search

- Slightly different way of targeting major backgrounds
 - $t\bar{t} \rightarrow 2l$ from 2l CR
 - W+Jets from 0 b-tag CR
 - MET distribution and (b-)jet multiplicity corrected with dedicated CRs
- Minor backgrounds from simulation

 Additional results for models with both top decay modes (CMS) and gluino-induced stop production (ATLAS)

Pieter Everaerts

Dilepton stop search

ATLAS-CONF-2016-009

- Targeting stop decay to bottom+chargino with small $\Delta M(\tilde{t}, \chi_1^{\pm})$
- 2 leptons, no b-jet requirement
- Separate different flavor and same flavor dileptons
 - Extra cut on Z candidate mass for SF
- M_{T2}>145 GeV
 - Extra cut on $R_{1} = \frac{MET}{MET + \sum_{i=1}^{2} p_{T,\ell_{i}i} + \sum_{k=1}^{2} p_{T,j_{k}}}$ to reduce Z/ γ +jets

Dilepton stop search

ATLAS-CONF-2016-009

- Non-prompt and misidentified leptons from loose-tight method
- Simultaneous fit for other background between:
 - Signal regions

Pieter Everaerts

- $t\bar{t}$ CR: DF CR with 60<M_{T2}<110 GeV
- $\ell\ell\nu\nu$ diboson CR: SF CR with Z candidate, large M_{T2} and large R_1
- Additional validation regions to check the background prediction

Vector-like quarks

- Some non-SUSY models predict vector-like quarks (VLQ) that stabilize the Higgs mass calculation (e.g. little Higgs, composite Higgs, extra dimensions)
- Pair production or single production of vector-like T quark with charge 2/3e:
 - Decay to bW, tZ or tH
- Some models also predict exotic top partners like X^{5/3}

CMS-B2G-15-006

Search for pair production of VLQs

- Focus on T quark pair production with at least 1 T decaying to tH
 - 1l final state
 - Assume $H \rightarrow b\overline{b}$
 - Interpretation in $t\overline{t}t\overline{t}$ production
- At least 6 jets with 2 b-tagged
- 100 GeV mass-tagged jets for top and Higgs candidates
- 11 search regions
 - Number of mass-tagged jets $(0,1,\geq 2)$
 - Number of b-tagged jets $(2,3,\geq 4)$
 - Invariant mass $b\overline{b}$ pair with smallest angular separation
- Data from simulation except for multijet backgrounds (data-driven)
- Validation regions with lower jet multiplicity

+ ≥1c

Validation

tī + ≥1b Non-tt Total Bkg unc.

10⁵

 10^{4}

 10^{3}

10²

10

Data / Bkg 1 2.0 2.0

5j, 2b

Post-fit

Search for pair production of VLQs ATLAS-CONF-2016-013

- Fit $m_{eff} = MET + p_{T,\ell} + \sum_{i=1}^{2} p_{T,j_k}$
- Limits on T^{2/3} better than 8 TeV limits by ~50-100 GeV
- ATLAS-CONF-2016-007 (1l stop) also reinterpreted the results for T→tZ with Z→vv

Pieter Everaerts

Search for top partners with charge 5/3 смз-в2G-15-006

- Top partner with charge 5/3 decays to W boson and top quark
 - Search in same-sign 2^e final state in **Clint Richardson's YSF** talk
 - Focus here on 1l+jets final state
 - \geq 4 jets, MET>100 GeV, $\Delta R(\ell, 2^{nd} \text{ jet})>1$
 - 1 or ≥ 2 b-jets, 0 or 1 boosted W (pruned mass and n-subjettiness)
 - Check the background modeling in $\Delta R(\ell, 2nd jet) < 1$ sideband
 - V+jets CR: 0 b-tagged jets
 - tt CR: at least 1 b-tagged jet
 - Fit min(M(l,b)) spectrum

Pieter Everaerts

Searches with 3rd generation quarks

March 17, 2013

16

Pieter Everaerts

Searches with 3rd generation quarks

Events

20È

10Ē

1.5

1000

March 17, 2013 17

2000

3000

4000

M, [GeV]

tt resonances search

- Search for $t\bar{t}$ resonance in 1l final state
 - Use dedicated isolation variables
 - Tighter MET and jet cuts in electron channel
 - Kinematic variable based on consistency with top pair hypothesis

$$\chi^2 = \left[\frac{M_{\rm top}^{\rm lep} - \bar{m}_{\rm top}^{\rm lep}}{\sigma_M^{\rm lep}}\right]^2 + \left[\frac{M_{\rm top}^{\rm had} - \bar{m}_{\rm top}^{\rm had}}{\sigma_M^{\rm had}}\right]^2$$

- Three search region:
 - 1 top-tag
 - 0 top-tag, 1 b-tag
 - 0 top-tag, 0 b-tag
- Simultaneous fit:
 - $M(t,\bar{t})$ spectrum in $t\bar{t}$ -dominated low $M(t,\bar{t})$ data/bkg
 - M(t,t) spectrum in W+jets CR: invert cut on top system χ^2
 - M(ℓ,ℓ) spectrum in DY CR: 2l

CMS-B2G-15-002

tt resonances search

- Search for tt resonance in 1l final state
 - Use dedicated isolation variables
 - At least one b-tagged jet needed
 - Leptonic top candidate from lepton and small-R jet
 - Large R-jet for top-tagging:
 - Jet mass and n-subjettiness
 - Back-to-back to lepton
- Fit M(t, t
) spectrum
- Background estimates:
 - W+jets background normalized from charge asymmetry in data and MC
 - Multi-jet leptons using sideband with loose leptons
 - $t\overline{t}$ from simulation

tt resonances search

CMS-B2G-15-002 ATLAS-CONF-2016-014

- Exclusion in narrow-width top-color Z'
 - Slightly different width: 1.2% (ATLAS) vs. 1% (CMS)
 - Not stronger yet than full combination of 0l, 1l and 2l at 8 TeV
- Search for tb resonance search in back-up
- Search for bb resonances in "Final states with high-p_T jets" talk from Clemens Lange

Pieter Everaerts

Conclusions

- CMS and ATLAS searched for new physics with t- and b-quarks at 13 TeV
 - Top and bottom squarks in different final states
 - $t\bar{t}$, $b\bar{b}$ and tb resonances
 - Heavy top partners in 1l and same-sign dilepton final states
- Analyses are pushing exclusions to higher masses:
 - More boosted objects
 - Different background composition requires new techniques
- Individual analyses surpassing 8 TeV sensitivity, eagerly awaiting more data

Pieter Everaerts

Back-up

Pieter Everaerts

Documentation

- Top squarks:
 - 0I: CMS-SUS-16-007
 - 1I: ATLAS-CONF-2016-007, CMS-SUS-16-002
 - 2I: ATLAS-CONF-2016-009
- Bottom squarks:
 - ATLAS-CONF-2015-066
- Third generation resonances:
 - tt CMS-B2G-15-002
 - bb ATLAS-CONF-2016-014
 - tb CMS-B2G-15-004
- Vector like quarks:
 - CMS-B2G-15-006
 - ATLAS-CONF-2016-013
 - Reinterpretation stop analysis: ATLAS-CONF-2016-007

Search for bottom squarks

- Final state: 2 bottom quarks, no leptons, MET>250 GeV
- Veto events with ≥ 4jets
- Two dedicated SRs:
 - SRA: For large $\Delta M(\tilde{b}, \chi_1^0)$:
 - two leading jets b-tagged,
 - M_{bb}>200 GeV
 - M_{CT}>250,350,450 GeV

 $m_{CT}^2(v_1, v_2) = [E_T(v_1) + E_T(v_2)]^2 - [p_T(v_1) - p_T(v_2)]^2$

- SRB: For small $\Delta M(\tilde{b}, \chi_1^0)$:
 - leading, high p_T (>300 GeV), non btagged ISR jet
 - Higher MET cut, with MET opposite to leading jet

ATL-CONF-2015-066

Pieter Everaerts

normalization in different control

Background estimation

regions:

Background

- Z+jets: 2l CR with SFOS with 76<M(୧,୧)<106 GeV
- tt : 1| CR,

For SRA estimates

- M(b,b) <200 GeV for CRA
- Single-top: 1l CR with M(ℓ,b)>170 GeV
- W+Jets: 1l CR with only 1
 b-tagged jet
- No excess observed

 $m_{\tilde{b}_{\star}}$ [GeV]

ATL-CONF-2015-066

Search for top partners with charge 5/3 смз-в2G-15-006

- Heavier stop partners can cancel the divergent terms in the Higgs mass calculation
- Top partner with charge 5/3 deacys to W boson and top quark
 - Search in SS final state in Clint
 Richardson's YSF talk
 - Focus here on 1l+jets final state
 - At least 4 jets
 - $1 \text{ or } \ge 2 \text{ b-jets}$
 - MET>100 GeV
 - Number of boosted W-jets
 - ∆R(ℓ,2nd jet)>1

Search for top partners with charge 5/3 CMS-B2G-15-006

CMS Preliminary

Bkg uncert. (stat.

200

400

March 17, 2013

350

300

st ²⁵⁰ 200 150

150

100

50

Data/Bkg

2.2 fb⁻¹ (13 TeV)

X_{5/3}X/5/3 (LH-0.8 TeV) x20 X5/3X5/3 (RH-1.3 TeV) x8

Bkg uncert. (stat.
 syst.

- DATA

EWK TOP

600

min[M(I,b)] (GeV)

26

800

- Check the background modeling in $\Delta R(\ell, 2^{nd} \text{ jet}) < 1 \text{ sideband}$
 - V+jets CR: 0 b-tagged jets
 - tt CR: at least 1 b-tagged jet
 - Derive systematic uncertainties on data-MC agreement
- Fit the M(l,b) mass spectrum
- No excess observed

Pieter Everaerts

W'→tb search

CMS-B2G-15-004

- Search for W' coupling to third generation
 - One very high p_T lepton (>180 GeV)
 - One very boosted jet ($p_T > 450$ (350) GeV)
 - 1 or ≥2 b-tagged jets
 - MET>50 (120) GeV
 - Top reconstruction:
 - Chose jet that gives best top mass candidate
 - Cut on mass and p_{T} top candidate
 - Highest-p_T unused jet is b-candidate
- Use the 0 b-tag region to get shape and normalization for W+jets
 - Also check modeling heavy-flavor and lightflavor components
- Check the top p_T distribution in 2 independent CRs (low mass and dilepton) and derive corrections
- Look for excess in M(t,b) spectrum

