Recent hot results & semileptonic *b* hadron decays

Jeroen van Tilburg On behalf of the LHCb collaboration

Moriond EW

Hot result: new tetraquark from DO? D0 collaboration: [arXiv:1602.07588]

- $\mathbf{P} = \mathbf{V} = \mathbf{P} + \mathbf{P} + \mathbf{P} = \mathbf{P} + \mathbf{P} +$
- D0 announced new state on 24 Feb: $X(5568) \rightarrow B_s \pi^{\pm}$
- Fraction B_s from X(5568): $(8.6 \pm 1.9 \pm 1.4)\%$
- $m = 5567.8 \pm 2.9 \,(\text{stat}) \,{}^{+0.9}_{-1.9} \,(\text{syst}) \,\text{MeV}/c^2$ $\Gamma = 21.9 \pm 6.4 \,(\text{stat}) \,{}^{+5.0}_{-2.5} \,(\text{syst}) \,\text{MeV}/c^2$

Significance: 5.1_o

Many citations:

arXiv:1603.02915, arXiv:1603.02708, arXiv:1603.02498, arXiv:1603.02249, arXiv:1603.01471, arXiv:1603.01131, arXiv:1603.00708, arXiv:1603.00290, arXiv:1602.08916, arXiv:1602.08711, arXiv:1602.09041, arXiv:1602.08806, arXiv:1602.08642, arXiv:1602.08421, and counting

Moriond EW

D0: Observation of a new $B_s^0 \pi^{\pm}$ state

Invitation to: CDF, LHCb, CMS, ATLAS Go find those tetraquarks!

Thank you!

Peter

Recent Tevatron Results on Heavy Flavors - Peter H. Garbincius - La Thuile - March 2016

22

Moriond EW

Hot result: new tetraquark from LHCb?

- Very preliminary.
- Large B_s samples:

in preparation

Hot result: new tetraquark from LHCb?

- No peak observed at 5568 MeV. Cannot confirm DO peak.
 - UL cross section ratio ~1%

 $\rho_X^{\text{LHCb}} \equiv \frac{\sigma(pp \to X(5568) + \text{anything}) \times \mathcal{B}\left(X(5568) \to B_s^0 \pi\right)}{\sigma(pp \to B_s^0 + \text{anything})}$

More details in Moriond QCD

Moriond EW

Physics of semileptonic B decays

Moriond EW

Physics of semileptonic *B* decays

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg 13/03/2016

6

Physics of semileptonic B decays

Moriond EW

Physics of semileptonic B decays

Moriond EW

$|V_{ub}|$ the smallest CKM element

$$V_{\rm CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg 13/03/2016

10

Ultimate test of CKM unitarity

Disagreement of $|V_{ub}|$ methods: $|V_{ub}|(incl.) = (4.41 \pm 0.22) \times 10^{-3}$ PDG $|V_{ub}|(excl.) = (3.72 \pm 0.16) \times 10^{-3}$ FNAL/MILC [PRD 92 (2015) 014024]

Moriond EW

LHCb's $|V_{ub}|$ with $\Lambda_b \rightarrow p\mu\nu$

[Nature Physics 10 (2015) 1038]

- Large backgrounds for $B \rightarrow \pi \mu v$
- ~20% of b-hadrons are Λ_{b} baryons
- Accurate lattice prediction on $\Lambda_b \rightarrow p$ form factors

 $V_{ub} - V_{cb}$ plane

Moriond EW

B_d oscillations

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg 13/03/2016

14

New result Precision measurement of Δm_d [LHCb-PAPER-2015-031], 3 fb⁻¹

Time-dependent analysis of flavour-tagged semileptonic decays

$$B^0 \to D^{(*)-} \mu^+ \nu_\mu X$$

 Decay time reconstructed with k-factor method

$$t_{corr} = \frac{L_{B} M_{B^{0}_{PDG}}}{p_{D\mu}^{rec}} \times k(m_{D\mu})$$
$$k(m_{D\mu}): p_{D\mu}^{rec}/p^{true}$$

15

Background from charged B decays suppressed by MVA exploiting kinematic and isolation criteria

Moriond EW

Precision measurement of Δm_d

[LHCb-PAPER-2015-031], 3 fb⁻¹

16

$$\Delta m_d = (505.0 \pm 2.1(\text{stat}) \pm 1.0(\text{syst})) \,\text{ns}^{-1}$$

- Most precise single measurement!
- World average (without this measurement)

 $\Delta m_d = (510 \pm 3) \,\mathrm{ns}^{-1}$

 Recent lattice improvements [arXiv:1602.03560] allow stronger constraints on CKM Unitarity Triangle

CP violation in B mixing

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg 13/03/2016

17

CP violation in B mixing

• Different mixing probability for $B \rightarrow \overline{B}$ and $\overline{B} \rightarrow B$

$$a_{sl} = \frac{N(B \to \overline{B}) - N(\overline{B} \to B)}{N(B \to \overline{B}) + N(\overline{B} \to B)}$$

- So far, only observed in neutral kaon system ($\varepsilon_{K} \approx 0.2\%$)
- SM predictions for *B* systems effectively zero

 $a_{\rm sl}^d = (-4.1 \pm 0.6) \times 10^{-4}$ $a_{\rm sl}^s = (1.9 \pm 0.3) \times 10^{-5}$

Lenz, Nierste [arXiv:1102.4274]

18

Moriond EW

Measurement of a_{sl}

Untagged asymmetry:

$$A(t) = \frac{N(f,t) - N(\bar{f},t)}{N(f,t) + N(\bar{f},t)} = A_D + \frac{a_{\rm sl}}{2} + \left(A_P - \frac{a_{\rm sl}}{2}\right)\cos(\Delta m t)$$

Moriond EW

Measurement of a_{s1}

Untagged asymmetry:

$$A(t) = \frac{N(f,t) - N(\bar{f},t)}{N(f,t) + N(\bar{f},t)} = A_D + \frac{a_{sl}}{2} + \left(A_P - \frac{a_{sl}}{2}\right) \cos(\Delta m t)$$

$$\frac{\text{etection asymmetry } A_D:}{N(p_1, p_2) + N(p_2)} = A_D + \frac{a_{sl}}{2} + \left(A_P - \frac{a_{sl}}{2}\right) \cos(\Delta m t)$$

D

- ٠ iviuons, kaons, pions.
- Large calibration samples. ٠

- alysis.
- For B_d , Δm_d small \rightarrow time-dependent analysis to disentangle a_{sl} and A_{P} .

Moriond EW

Measurement of a_{sl}

Untagged asymmetry:

$$A(t) = \frac{N(f,t) - N(\bar{f},t)}{N(f,t) + N(\bar{f},t)} = A_D + \frac{a_{\rm sl}}{2} + \left(A_P - \frac{a_{\rm sl}}{2}\right) \cos(\Delta m t)$$

<u>Detection asymmetry A_D:</u>

- Muons, kaons, pions.
- Large calibration samples.

Production asymmetry A_P:

- For B_s , Δm_s large \rightarrow time-integrated analysis.
- For B_d , Δm_d small \rightarrow time-dependent analysis to disentangle a_{sl} and A_{P} .

$$B_s^0 \to D_s^- (\to K^+ K^- \pi^-) \mu^+ \nu$$

 $a_{\rm sl}^s = (-0.06 \pm 0.50 \pm 0.36)\%$

[PLB 728 (2014) 607] 1.0 fb⁻¹

$$B^{0} \to D^{-} (\to K^{+} \pi^{-} \pi^{-}) \mu^{+} \nu$$
$$a_{\rm sl}^{d} = (-0.02 \pm 0.19 \pm 0.30)\%$$

[PRL 114 (2015) 041601]

→ Systematic dominated by detection asymmetries

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg 13/03

13/03/2016

3.0 fb⁻¹

Current a_{sl} status

Current a_{sl} status

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg

Current a_{sl} status

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg

CPT violation in B mixing

Moriond EW

CPT violation

• *CPT* symmetry implies equal mass & lifetime B^0 and \overline{B}^0 mesons

$$z = \frac{\delta m - i\delta\Gamma/2}{\Delta m - i\Delta\Gamma/2}$$

• Mass eigenstates:

$$|B_L^0\rangle = p\sqrt{1-z}|B^0\rangle + q\sqrt{1+z}|\bar{B}^0\rangle$$
$$|B_H^0\rangle = p\sqrt{1+z}|B^0\rangle - q\sqrt{1-z}|\bar{B}^0\rangle$$

- *CP* violation: $|q/p| \neq 1$
- *CPT* violation: $z \neq 0$

Moriond EW

CPT and Lorentz symmetry

- CPT violation implies Lorentz invariance breaking.
 [Greenberg, PRL 89 (2002)]
- SME: EFT framework with CPT- & Lorentz-violating terms. [Kostelecky, PRD55 (1997) 6760]
- Experimental opportunity: measure SME parameters.

 $z = \frac{\beta^{\mu} \Delta a_{\mu}}{\Delta m - i \Delta \Gamma/2}$ SME coefficient for neutral mesons

- z depends on four-velocity $eta^\mu = \gamma(1,ec{eta})$
 - i.e. on momentum and on direction in space
- Δa_{μ} is real 4-vector vacuum expectation value $\rightarrow z$ mostly real

$$z = \frac{\beta^{\mu} \Delta a_{\mu}}{\Delta m - i \Delta \Gamma/2} \rightarrow \left[\mathcal{R}e(z) = \frac{\gamma}{\Delta m} \left[\Delta a_0 + \cos(\chi) \Delta a_Z + \sin(\chi) \left[\Delta a_Y \sin(\Omega \hat{t}) + \Delta a_X \cos(\Omega \hat{t}) \right] \right] \right]$$

Moriond EW

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg 13/03/2016

29

Hadronic decay modes give larger sensitivity than semileptonic

$$B^0 \to J/\psi K_S^0$$

 $B_s^0 \to J/\psi K^+ K^-$

Moriond EW

Moriond EW

Results

 $\begin{aligned} \Delta a_0^{B^0} &- 0.38 \Delta a_Z^{B^0} = (-0.10 \pm 0.82 \,(\text{stat}) \pm 0.54 \,(\text{syst})) \times 10^{-15} \,\text{GeV} \\ 0.38 \Delta a_0^{B^0} &+ \Delta a_Z^{B^0} = (-0.20 \pm 0.22 \,(\text{stat}) \pm 0.04 \,(\text{syst})) \times 10^{-13} \,\text{GeV} \\ \Delta a_X^{B^0} &= (+1.97 \pm 1.30 \,(\text{stat}) \pm 0.29 \,(\text{syst})) \times 10^{-15} \,\text{GeV} \\ \Delta a_Y^{B^0} &= (+0.44 \pm 1.26 \,(\text{stat}) \pm 0.29 \,(\text{syst})) \times 10^{-15} \,\text{GeV} \end{aligned}$

New result (preliminary) O(10³) more precise than BaBar result

• *B_s* system (SME):

$$\begin{split} &\Delta a_0^{B_s^0} - 0.38 \Delta a_Z^{B_s^0} = (-0.89 \pm 1.41 \,(\text{stat}) \pm 0.36 \,(\text{syst})) \times 10^{-14} \,\text{GeV} \\ &0.38 \Delta a_0^{B_s^0} + \Delta a_Z^{B_s^0} = (-0.47 \pm 0.39 \,(\text{stat}) \pm 0.08 \,(\text{syst})) \times 10^{-12} \,\text{GeV} \\ &\Delta a_X^{B_s^0} = (+1.01 \pm 2.08 \,(\text{stat}) \pm 0.71 \,(\text{syst})) \times 10^{-14} \,\text{GeV} \\ &\Delta a_Y^{B_s^0} = (-3.83 \pm 2.09 \,(\text{stat}) \pm 0.71 \,(\text{syst})) \times 10^{-14} \,\text{GeV} \end{split}$$

O(10) more precise than recent D0 result [PRL 115 (2015) 161601]

 $B_{s} \text{ system: (no assumption on Lorentz breaking)} \\ \mathcal{R}e(z^{B_{s}^{0}}) = -0.022 \pm 0.033 \text{ (stat)} \pm 0.003 \text{ (syst)} \\ \mathcal{I}m(z^{B_{s}^{0}}) = 0.004 \pm 0.011 \text{ (stat)} \pm 0.002 \text{ (syst)} \\ \end{array}$

First measurement of z in B_s system

Consistent with *CPT* and Lorentz symmetry

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg

Periodogram test

New result (preliminary) Scan large frequency range (not only sidereal):

 \rightarrow No significant peaks found at *p*-values of 0.57 and 0.06

Moriond EW

Conclusions

- No confirmation of X(5568) (LHCb-CONF-2016-004 preliminary)
- Semileptonic decays challenging, but interesting results:
 - *B_d* oscillations, CP violation, |*V_{ub}*/*V_{cb}*|. [LHCb-PAPER-2015-031] [PLB 728 (2014) 607] [NP 10 (2015) 1038] [PRL 114 (2015) 041601]
- New results on CPT & Lorentz violation
 - Improved limits SME parameters in B_d system
 - First measurements in B_s system (Δa_μ and z)

[LHCb·PAPER·2016·005]

Moriond EW

Backup

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg 13/03/2016

35

More $B_s \pi$ spectra [LHCb-CONF-2016-004]

Systematic uncertainties

B^0 mixing	Δa_{\parallel}	Δa_{\perp}	$\Delta a_{X,Y}$	
Source	$[\times 10^{-15} \text{GeV}]$			
Mass correlation	_	_	0.04	
Wrong PV assignment	—	1	_	
Production asymmetry	0.28	1	0.05	
External input C_f , S_f	0.46	4	0.28	
Decay width difference	0.07	—	_	
Neutral kaon asymmetry	—	1	_	
Quadratic sum	0.54	4	0.29	

Largest contribution: Fixed $C_f \& S_f$ due to correlation with z. External input not affected by LIV, due to low boost. Only works for SME approach.

B_s^0 mixing	Δa_{\parallel}	Δa_{\perp}	$\Delta a_{X,Y}$	$\mathcal{R}e(z)$	$\mathcal{I}m(z)$
Source		10^{-14} (
Mass correlation	0.10	3	0.24	0.001	0.002
Peaking background	0.14	3	0.15	0.003	—
Decay time acceptance	0.30	7	0.65	—	0.001
Angular acceptance	-	—	_	0.002	0.001
Quadratic sum	0.36	8	0.71	0.003	0.002

Small \rightarrow No systematic effects expected with sidereal and boost dependence.

Moriond EW

Recent hot results & semileptonic B decays, Jeroen van Tilburg

LHCb's $|V_{ub}|$ with $\Lambda_b \rightarrow p\mu\nu$

- Backgrounds too large for inclusive decays and for exclusive $B \rightarrow \pi \mu v$
- ~20% of *b*-hadrons are Λ_b baryons
- Use BF($\Lambda_c \rightarrow pK\pi$) for normalisation: 5% uncertainty
 - Belle measurement [PRL 113 (2014) 04002]
- Accurate lattice prediction on $\Lambda_{\rm b} \rightarrow p$ form factors:
 - Uncertainty ~5%
 - [Phys. Rev. D 92, 034503 (2015)]
- Analysis strategy:
 - Normalization & main background $\Lambda_{\rm b} \rightarrow \Lambda_{\rm c} \mu v$
 - Corrected mass from flight direction (+uncertainty)

Moriond EW

[[]Nature Physics 10 (2015) 1038]

Are all leptons equal?

Moriond EW

13/03/2016

39

Semitauonic branching ratio

$$R(D^{(*)}) = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu)}{\mathcal{B}(B \to D^{(*)} \mu \nu)}$$

Branching ratio to tau leptons sensitive to charged Higgs

• Large, anomalous BR in $B \rightarrow D^{(*)} \tau v$ at BaBar.

•

BR of $B \rightarrow D^* \tau v$ at LHCb

LHCb measurement confirms BaBar result.

 $\mathcal{R}(D^*) = 0.336 \pm 0.027 \,(\text{stat}) \pm 0.030 \,(\text{syst})$ [PRL 115 (2015) 111803]

Increases tension with SM

Moriond EW