NON-CONVENTIONAL FINAL-STATES AT 13 TEV

8 Ter and

R. Kopeliansky, Indiana University on behalf of the ATLAS & CMS collaborations 51st Rencontres de Moriond, La Thuile, Italy, March 2016

Outline

- Non-conventional-ism:
- ✓ Definition
- ✓ Search requirements
- Detailed results:
- ✓ Metastable scenarios
- Long-lived particles
 - <u>Summary</u>

Non-conventional-ism

Non-conventional final-state usually refers to unique detector signatures

- Mostly refers to physics beyond the standard model (BSM)
- Many scenarios include new particles with relatively long life-time, enabling direct measurements
- Final states can include BSM particles
- The new particle interactions with the detector can differ from interactions involving SM particles
- Massive new particles are expected to travel at low velocities (eta < 1)
- If electrically charged, the new particle is expected to be highly ionizing
- Unusual decay products can be produced (L,B numbers violation, multiple jets, etc...)

Searching for non-conventional final-states

Usually requires non-conventional analysis methods

- Detector-signature driven search
- Standard triggers are not designed for unusual objects
- Self-made object reconstructions is required
- Requires non-standard analysis strategies and tools
- Custom made MC simulations
- Background estimation is usually data driven

Metastable-ness

Metastable particles

- · Considered as long-lived if their decay occurs inside the detector volume
- The decay location is usually unknown and hence a range of lifetimes will be studied
- · In most cases the background sources are cavern/instrumental noise and badly reconstructed objects

Considered models:

- \tilde{g}, \tilde{t} or \tilde{b} forming R-hadron states together with light SM quarks:
- ✓ Within SplitSUSY decaying either in the calorimeter or in the Muon system
- \checkmark Stopped $ilde{g}$ stop within the calorimeter and then decay after a while to $ilde{\chi}_1^0$ + hadronic jet (g or $ar{q}q$)
- Disappearing tracks ${\widetilde \chi}_1^\pm$ within AMSB model decaying to ${\widetilde \chi}_1^0\pi^\pm$
- Displaced vertices:
- ✓ Hidden Valley predictions of exotic particles: H/Z decaying to multiple-jets
- \checkmark RPV or Stealth SUSY scenarios of either $\widetilde{\chi}^0_1$ or \widetilde{g} decays
- Prompt and non-prompt Dark photons γ_D decays to lepton-jets (LJs)

ATLAS: Metastable heavy charged particles - 13 TeV

Features & search strategy:

The LLP will hadronize together with SM light colored particles into an **R-hadron** bound state

- · Massive
- Slow $(\beta < 1)$
- Large ionization $\left(\frac{dE}{dx} > \frac{dE}{dx_{MIP}}\right)$
- Mass estimated from $\frac{dE}{dx}(\beta\gamma)$ and p Pixel measurements
- Background source: badly reconstructed or mis-measured objects
- Background estimation based on control data samples and a randomly generated data sample

ATLAS SUSY-2016-03-01 Submitted to Phys. Rev. D

<u>SplitSUSY</u>

- q above the TeV scale
- \tilde{g} as the NSLP
- $\tilde{\chi}_1^0$ as the LSP
- Life-time depend on $\Delta m_{\tilde{g}-\tilde{\chi}_1^0}$

<u>Limits</u>

 \tilde{g} masses with lifetime ≥ 10 ns are excluded at 95% CL up to 1580 GeV

*stable ĝ R-hadron scenarios were considered as well, where ĝ masses up to 1570 GeV are excluded at 95% CL

Features & search strategy

Stopped g R-hadrons

<u>SplitSUSY</u>

- q above the TeV scale
- $ilde{g}$ as the NSLP
- ${\tilde \chi}_1^0$ as the LSP
- Life-time depends on ${\Delta m}_{{\widetilde g}-{\widetilde \chi}_1^0}$
- Simplified models with either \tilde{t} or \tilde{b} as LLP

- The LLP will hadronize together with SM light colored particles into a R-hadron bound state
- A fraction of the R-hadrons lose all of their momentum and come to rest within the calorimeter ($\beta \leq 0.45c$)
- Search for calorimeter activity during empty collision bunchcrossings (BC) time windows
- Background sources: collision remnants, beam halo, cosmic rays, instrumental noise
- Background estimation using control data samples for the different sources at unpaired & empty collision BC periods

ATLAS arXiv:1310.6584 CMS arXiv:1501.05603

<u>Limits</u>

Search strategy

- · Charged particle decaying in the tracker
- Detector signature of isolated track with:
- No hits in the muon detector
- Little or no calorimeter energy deposits
- Missing hits in the outer layer of the tracker
- High-p_T ISR jets and E_T^{miss} recoiling against the LLP track
- Background sources:
- Charged hadrons interacting with the ID material
- Prompt e/μ failing identification criteria
- Fake tracks
- Background estimation based on control data samples for each source and simulation in order to determine the identification inefficiency

ATLAS arXiv:1310.3675 CMS arXiv:1411.6006

AMSB:

- ${ ilde\chi}^0_1$ as the LSP
- $\tilde{\chi}_1^\pm$ as the NLSP
- The typical $\Delta m_{\widetilde{\chi}_1^\pm \widetilde{\chi}_1^0}$ allows for considerable $\widetilde{\chi}_1^\pm$ life-time
- ${ ilde \chi}_1^\pm$ eventually will decay to ${ ilde \chi}_1^0\pi^\pm$
- π^\pm with too small p to be reconstructed

Displaced vertices

Hidden-Valley scenarios:

- BSM H scalar boson decaying to two neutral LLPs X, each decaying into dijet
- Heavy Z' boson decaying to two neutral LLPs X', each decaying into hadronic jets

SUSY scenarios:

- RPV model of ilde q production decaying into $ilde \chi_1^0$ and then to $q \overline q \mu$
- Stealth /Split SUSY predicting production of $ilde{g}/ ilde{q}$ decaying into $ilde{G}+$ dijet

Search strategy

- Long-lived particles decaying to jets in either the tracker (ID) or Muon (MS) detector stations
- Two secondary (displaced) vertices, located significantly far from the interaction-point in either or both detector stations
- Background source:
- Jets with high track multiplicity in the ID
- Cavern background and cosmic rays in the MS
- Data driven methods used for estimation

ATLAS arXiv:1504.05162,03634 CMS arXiv:1411.6530

Search strategy

Dark photon YD

- Light hidden photon γ_D mixed kinetically with SM photon
- Expected small mass and hence produced boosted and long-lived
- At its lightest state the γ_D will decay to SM particles
- Considered scenarios:
- Non-SM H decays to hidden fermions f_D / scalars S_D decaying to γ_D
- SUSY-portal: \tilde{q} decaying to $\tilde{\chi}^0_1 \rightarrow \tilde{\chi}_D$
- The γ_D will decay to lepton pairs, reconstructed as LJs
- Model independent search for a detector signature of either prompt or non-prompt decays of LJs

- Background sources: multi-jet production and cosmic-rays
- Estimation of background using control data samples and MC simulations

ATLAS arXiv:1409.0746, 1511.05542 CMS arXiv:1506.00424

Set on the $\sigma \times BR$ at 95% CL for:

- Prompt LJs scenario based on the SUSYportal for the possible LJ combinations in the $2\gamma_d + X$ topology at $m_{\gamma_D} = 0.7 \ GeV$
- Non-prompt LJs scenario BR lower than 10% for H with $m_H = 125 \ GeV$ decaying to γ_d with $m_{\gamma_D} = 0.4 \ GeV$:
- $H \rightarrow 2\gamma_d + X$ for γ_d with (w/o TYPE2) $14 \text{mm} \le c\tau \le 140 \text{mm}$
- $H \rightarrow 4\gamma_d + X$ for γ_d with (w/o TYPE2) $15 \text{mm} \le c\tau \le 260 \text{mm}$
- $H \rightarrow 4\gamma_d + X$ for γ_d with (TYPE2 included) $52mm \le c\tau \le 85mm$

Long-livedness

Long-lived particles (LLP) - Long enough life-time to be measured by the detector

- Interaction with the detector:
- ✓ Electrically charged LLPs will leave signal in all detector stations
- ✓ Strongly interacting LLPs might flip their electric charge while interacting with the detector medium
- LLPs are expected to be massive and hence slower than SM particles (eta < 1)
- · Ionization energy loss bigger than a Minimum Ionizing Particle (MIP)

Considered models:

- $ilde{ au}_1$ as NLSP within GMSB (Decay product originating from production of $ilde{g}, ilde{q}$ or direct production)
- \tilde{g} forming R-hadron within SplitSUSY (simplified models of \tilde{t} as LLP considered as well)
- Multi-charge long-lived heavy particles, with 191 ranging from Ze-8e

CMS: Heavy Stable Charged LLPs - 13 TeV

<u>Considered</u> scenarios

- $\tilde{\tau}_1$ within GMSB or From direct production
- g R-hadrons within SplitSUSY
- Single & doubly charged LLPs

Features different from SM particles:

- Slower (eta < 1)
- Larger ionization $\left(\frac{dE}{dx} > \frac{dE}{dx}_{MIP}\right)$
- Massive

Search strategies applied:

- 'Tracker-only': Mass estimated from the Silicon detector information, via $\frac{dE}{dx}$ and p measurements
- 'Tracker+ToF': Mass is estimated from the Silicon detector information, via $\frac{dE}{dx}$ and p measurements + ToF measured by the Muon detector is used as further selection criteria

CMS PAS EX0-15-010

'Tracker-Only' Limits

For the <u>R-hadron</u> searches, the highest limits were set based on the 'Tracker-Only' search:

- $m_{\tilde{g}}$ <1590 GeV
- $m_{\tilde{t}} < 1020 \text{ GeV}$

'Tracker+ToF' Limits

2.4 fb⁻¹ (13 TeV) Tracker - Only

🗕 gluino; 50% ĝg

____ gluino; 10% gg

stau; dir. prod.

2000

Mass (GeV)

stop

-e stau

stop; CS

-+- IQI = 2e

-____ gluino; 10% g̃g; CS

For the <u>Stau and DY charged HSCP</u> searches, higher limits were set using the 'Tracker+ToF' strategy:

- GMSB $\tilde{\tau}_1: m_{\tilde{\tau}_1} {\scriptstyle <} 480~{\rm GeV}$
- DY $\tilde{\tau}_1 : m_{\tilde{\tau}_1} \textbf{230 GeV}$
- DY |Q|=1e m<540 GeV
- DY |Q|=2e m<650 GeV

Multi-charge particles

Scenario

- Drell-Yan (DY) production of multi-charge particles (MCPs), with only photon exchange included
- Predicted by several DM motivated theories
- Consider |9|: 2e→8e

Features:

- Long-lived, slow, massive particles
- Directly produced in DY process
- Highly ionizing, leaving large $\frac{dE}{dx}$ information in all detector layers
- Energy loss in the calorimeter expected to be q^2 times of a μ 's (3 GeV)
- $-\frac{dE}{dx}$ is used as a discriminating variable between signal and background
- The background is data driven and is estimated using the ABCD method

ATLAS arXiv:1504.04188 CMS arXiv:1305.0491

Summary

- · Many BSM models predict non-conventional detector signatures
- Custom analysis techniques are designed & used to achieve sensitivity to these important final-states
- Presented latest results from searches studied on 8 TeV and 13 TeV datasets
 ✓ Metastable particles
 ✓ Long-lived particles
- · No evidence for the existence of new physics was found
- · Higher limits were set at 95% CL on the new particle mass (and lifetime)
- · Increased sensitivity to these searches at 13 TeV due to higher production cross-section
- · Work is on-going in analyzing the Run-2 results

Being a little weird is just a natural side-effect of being awesome.

~ Sue Fitzmaurice

fb/the idealis

14

Back-up...

Metastable & Stable Long-lived particles

ATLAS CERN-PH-EP-2015-049

CMS: Heavy Stable Charged LLPs - 13 TeV

<u>Considered</u> scenarios

- $\tilde{\tau}_1$ within GMSB and From direct production
- g R-hadrons within SplitSUSY
- Single & doubly charged LLPs

Mass estimation based on silicon detector measurements: $dE = m^2$

$$\frac{dL}{dx} = K\frac{m}{p^2} + C$$

K,C - empirical parameters

Multi-charge particles

