

The Search for the Right-Handed Neutrinos

The Nobel Prize in Physics 2015 Takaaki Kajita, Arthur B. McDonald

The Nobel Prize in Physics 2015

Photo © Takaaki Kajita Takaaki Kajita Prize share: 1/2

Photo: K. MacFarlane. Queen's University /SNOLAB Arthur B. McDonald

The Nobel Prize in Physics 2015 was awarded jointly to Takaaki Kajita and Arthur B. McDonald *"for the discovery of neutrino oscillations, which shows that neutrinos have mass"*

Prize share: 1/2

Q | Terms

Copyright © Nobel Media AB 2015

The discovery that neutrino flavours transform (Neutrino Oscillations) was a long process initiated in 1968 and completed in 1998-2001.

→ <u>Neutrinos have mass !</u>

There is no unique way to incorporate this in the Standard Model

It almost certainly implies the existence of

- -- new mass-generation mechanism
- -- new phenomena such as right-handed neutrinos

➔ possible explanations for the baryon asymmetry of the universe and for dark matter

Neutrino masses? Mixings? Ordering? Majorana mass term? CP violation eV, keV, GeV, TeV, ..., ZeV RH neutrinos?

This opens a deep field of research for many many years.

Electroweak eigenstates

Adding masses to the Standard model neutrino 'simply' by adding a Dirac mass term (Yukawa coupling)

$$m_D v_L v_R$$
 $m_D \overline{v_L} v_R$

$$\xrightarrow{\overleftarrow{\mathbf{v}}_{\mathbf{R}}} \underset{m_{\mathbf{D}}}{\overleftarrow{\mathbf{v}}_{\mathbf{L}}}$$

implies adding a right-handed neutrino (new particle)

<u>No SM symmetry prevents adding then a term like</u>

$$n_M \overline{v_R^c} v_R$$

and this simply means that a neutrino turns into a antineutrino

It is perfectly conceivable ('natural'?) that both terms are present.

Dirac mass term + Majorana mass term -> 'see-saw'

B. Kayser, the physics of massive neutrinos (1989)

Mass eigenstates

Manifestations of right handed neutrinos

one family see-saw : $\theta \approx (m_D/M)$ $m_v \approx \frac{m_D^2}{M}$ $m_N \approx M$ $|U|^2 \propto \theta^2 \approx m_v / m_N$ $v = vL\cos\theta - N^c_R \sin\theta$ $N = N_R\cos\theta + v_L^c\sin\theta$

what is produced in W, Z decays is: $v_L = v \cos\theta + N \sin\theta$

v = light mass eigenstate N = heavy mass eigenstate $\neq v_L$, active neutrino which couples to weak inter. and $\neq N_R$, which does'nt.

- -- mixing with active neutrinos leads to various observable consequences
 - -- if very light (eV) , possible effect on neutrino oscillations (see talks later today)
 - -- if in keV region (dark matter), monochromatic photons from galaxies with $E=m_N/2$
- -- possibly measurable effects at High Energy

If N is heavy it will decay in the detector (not invisible)

- ➔ PMNS matrix unitarity violation and deficit in Z «invisible» width
- → Higgs, Z, W visible exotic decays H→ $v_i \overline{N}_i$ and Z→ $v_i \overline{N}_i$, W-> $I_i \overline{N}_i$
- → also in K, charm and b decays via W^{*}-> $I_i \stackrel{\pm}{=} N$, N → $I_j \stackrel{\pm}{=}$ with any of six sign and lepton flavour combination

 \clubsuit violation of unitarity and lepton universality in Z, W or $\tau\,$ decays

-- etc... etc...

-- Couplings are very small (m_v / m_N) (but who knows?) and generally seem out of reach at high energy colliders.

Alain Blondel Search for Right Handed Neutrinos

Search Processes (I)

Searches for long lived decays in neutrino beams PS191, NuTeV, CHARM; SHIP and DUNE proposals

Alain Blondel Search

New proposal

Experiment	PS191	NuTeV	CHARM	SHiP
Proton energy (GeV)	19.2	800	400	400
Protons on target $(\cdot 10^{19})$	0.86	0.25	0.24	20
Decay volume (m^3)	360	1100	315	1780
Decay volume pressure (bar)	1 (He)	1 (He)	1 (air)	10^{-6} (air)
Distance to target (m)	128	1400	480	80-90
Off beam axis (mrad)	40	0	10	0

Next generation heavy neutrino search experiment SHIP

- -- focuses on neutrinos from charm to cover 0.5 2 GeV region
- -- uses beam dump to reduce background from neutrino interactions from pions and Kaons and bring the detector as close as possible to source.
- -- increase of beam intensity and decay volume
 - status: proposal, physics report and technical report exist. R&D phase approved at CERN

Search for heavy right-handed neutrinos in collider experiments.

Z factory (FCC-ee, Tera-Z)

HE Lepton Collider (LEP2, CEPC, CLIC, FCC-ee, ILC, $\mu\mu)$

Searches for heavy neutrinos v_h in B decays

-- BELLE Phys. Rev. D. 87, 071102 (2013), arXiv:1301.1105 7.8 10⁸ B mesons at Y_{4s}!

Search for $\ell_2 + (\ell_1 \pi)$, where ℓ_1 and π have **opposite charge and displaced vertex** for M(v_h) =1GeV/c2 and $|U_e|^2 = |U_{\mu}|^2 = 10^{-4}$ the flight length is $c\tau \simeq 20$ m.

→ charge and flavour of $\boldsymbol{\ell}_2 \boldsymbol{\ell}_1$ can be **any combination of e**, μ , + **or** - because the heavy neutrino is assumed to be Majorana. (If Dirac fermion, -> opposite charges only). A few signal events, no 'peak'.

limits at $|U|^2 \sim 10^{-2-5}$ level

ATLAS search for Heavy Neutrinos at LHC JHEP07(2015)162 arXiv:1506.06020

 e^-e^- , e^+e^+ , $\mu^-\mu^-$, $\mu^+\mu^+$ final states (like sign, like flavour leptons) Concentrates on $m_N > 100$ GeV 'because <100 GeV excluded by LEP'

Charge flip significant bkgd for ee channel

14

LHC prospects

 $\sim 10^9$ vs from W decays in ATLAS and CMS with 25 fb⁻¹ @8 TeV

Signals of RH neutrinos with mass $\leq m_w$ could be visible if mixing angle O(10^{-7,8})

The keys for that region of phase space

- -- require **displaced vertex**
- -- allow leptons of different charge and flavour
- -- constrain to W mass.

Fig. 4. Efficiency of the monojet search (Sect. 3) and the acollinear jets search (Sect. 4). The *full curve* shows the efficiency of the two searches combined

search e⁺ e⁻ \rightarrow v N N \rightarrow v(γ/Z)^{*} \rightarrow monojet

Find: one event in 4x10⁶Z:

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

- pp-collider (FCC-hh)
 - ~16 T \Rightarrow 100 TeV *pp* in 100 km

→ ultimate goal defining infrastructure requirements

- e⁺e⁻ collider (FCC-ee) as potential first step ECM=90-400 GeV
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area

FCC-ee highest possible luminosity from Z to tt by exploiting b-factory technologies:

- separate e- and e+ storage rings
- very strong focussing: $\beta^* y = 1 2 \text{ mm}$ (target, baseline -- work in progress!)

A.B, Elena Graverini, Nicola Serra, Misha Shaposhnikov

20

Alain Blondel Future Lepton Colliders

Alain Blondel Future Lepton Colliders

Alain Blondel Future Lepton Colliders

Outlook for FCC-hh

We have seen that the Z factory offers a clean method for detection of Heavy Right-Handed neutrinos Ws are less abundant at the lepton colliders

At the 100 TeV pp W is the dominant particle, Expect 10¹³ real W's.

There is a lot of /pile-up/backgrounds/lifetime/trigger issues which need to be investigated.

BUT.... in the regime of long lived HNLs the simultaneous presence of

-- the initial lepton from W decays

-- the detached vertex with kinematically constrained decay allows for a significant background reduction.

But it allows also a characterization both in flavour and charge of the produced neutrino, thus information of the flavour sensitive mixing angles and a test of the fermion violating nature of the intermediate (Majorana) particle.

VERY interesting...

Conclusion

The quest for the right-handed neutrinos

(dextrinos? Right-handed neutrinos? Heavy Neutral Leptons? Heavy Majoranas? Shaposhninos? heavinos? Sterile neutrinos... etc.)

is taking place directly in astrophysics, neutrino beams and collider experiments.

It is not desperate at all

Thanks to the 'detached vertex' signatures the background can be drastically reduced. a beam dump experiment (SHIP) a Tera-Z factory like FCC-ee Tera W factory like the B factories or the HL/LHC and FCC-hh can reach definitive conclusions if the mass lies below the Z mass.

