Top quark production at the LHC

15TH MARCH 2016

P. Ferreira da Silva (CERN) on behalf of the ATLAS and CMS Collaborations

(c) Sebastião Salgado

Outlook

- The talk is organised as follows
 - Rates and dynamics of top quark pair production
 - Testing the EW couplings through single top production
 - Conclusions

- A review of the latest results on top production at the LHC is given
 - emphasis is put on 13 TeV results and latest "legacy" LHC Run I results
 - attempt for a summary of what have we learnt so far and what lies ahead

- Many more results can be found in
 - ATLAS public page https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults
 - CMS public page https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

Rates and dynamics of top quark pair production

Latest results on inclusive and differential $pp \rightarrow tt$ measurements:

interplay with fundamental parameters (m_t, α_s) and searches for new physics;

testing perturbative QCD predictions.

Why is top quark pair production (still) interesting?

- Pair production is dominated by strong interactions
 - sensitivity to mass⁴: $\hat{\sigma} \propto (\frac{\alpha_{\rm S}}{m_{\rm t}})^2 f(\alpha_{\rm S}, \beta)$
 - furthermore differential distributions are sensitive to the width and to EW corrections

Precise cross section measurements open the door to measure fundamental constants and test new physics

• Typical time scales allow to study the properties of a bare quark

- Top quarks couple to all interactions
 - privileged coupling to the Higgs $Y_t \approx I$ to be established directly by experiments
 - decays ruled by EW interactions: $t \rightarrow Wb$ dominates as $V_{tb} \approx I$
 - W decay chain generates a plethora of final states: all jets, lepton+jets, dileptons

$\sigma(tt)$: status after Run I

•

ATLAS+CMS Preliminary LHC*top*WG $\sigma_{t\bar{t}}$ summary, $\sqrt{s} = 8$ TeV Mar 2016 All final states covered NNLO+NNLL PRL 110 (2013) 252004, PDF4LHC $m_{top} = 172.5 \text{ GeV}$ total stat fair agreement for different analysis scale uncertainty $\sigma_{t\bar{t}} \pm (stat) \pm (syst) \pm (lumi)$ scale \oplus PDF $\oplus \alpha_s$ uncertainty no tension with respect to the SM ATLAS, lepton+jets $260 \pm 1^{+22}_{-23} \pm 8 \text{ pb}$ NNLO+NNLL prediction for m_t=172.5 GeV PRD 91 (2015) 112013, L_{int}=20.3 fb⁻¹ CMS, lepton+jets 228.5 ± 3.8 ± 13.7 ± 6.0 pb arXiv:1602.09024, L_{int}=19.6 fb⁻¹ CMS, lepton+ τ_h $257 \pm 3 \pm 24 \pm 7$ pb **Dilepton analyses lead in precision** PLB 739 (2014) 23, L_{int}=19.6 fb⁻¹ ATLAS, dilepton eµ $242.4 \pm 1.7 \pm 5.5 \pm 7.5 \text{ pb}$ EPJ C74 (2014) 3109, L_{int}=20.3 fb⁻¹ electron+muon + jets final state CMS, dilepton (ee, $\mu\mu$, e μ) $239.0 \pm 2.1 \pm 11.3 \pm 6.2 \text{ pb}$ JHEP 02 (2014) 024, L_{int}=5.3 fb⁻¹ high purity sample (~90%) LHC combined eµ (Sep 2014) $241.5 \pm 1.4 \pm 5.7 \pm 6.2 \ pb$ ATLAS-CONF-2014-054, CMS-PAS TOP-14-016 large acceptance due to loose cuts L_{int}=5.3-20.3 fb⁻¹ CMS, dilepton eu $244.9 \pm 1.4^{+6.3}_{-5.5} \pm 6.4 \text{ pb}$ arXiv:1603.02303, L_{int}=19.7 fb⁻¹ CMS, all jets LHCb has also observed top 275.6 ± 6.1 ± 37.8 ± 7.2 pb arXiv:1509.06076, L_{int}=18.4 fb⁻¹ production in the forward region Effect of LHC beam energy uncertainty: 4.2 pb PRL 115, 112001 (2015) (not included in the figure) (won't cover in this talk) 250 100 150 200 300 350 $\sigma_{t\bar{t}}$ [pb]

400

σ(tt) has been promptly measured at 13 TeV

- Re-established tt production at 13 TeV with very early data : <100 pb⁻¹
- Evolution as function of s^{1/2} seems well understood: tt can be used as a "gluon luminometer"

Early cross section measurements I

- Focused on counting high purity eµ events
 - **Typical requirements:** 2 op. sign leptons (p_T >20 GeV $|\eta|$ <2.5)

at least two jets (p_T>30 GeV $|\eta|$ <2.5)

- Backgrounds
 - single resonant production tW dominates
 - Drell-Yan/fake leptons : estimated in data
- Main uncertainties:

Source	Δσ/σ (%)
Statistics	7.8
Luminosity	4.8
Trigger/selection	5.6
Signal modelling	2.6
PDF	2.4
Backgrounds	2.1

7

Expect partial scaling of exp. with more data: integ. luminosity/efficiencies/energy scales

Early cross section measurements I

- Beyond counting : profit from statistics to constraint in-situ some systematics
 - count jets identified as coming from the hadronization of a b quark
 - counts in each category are related by the b-identification efficiency ($\epsilon_b \approx 70\%$)

Using top quarks as gluon luminometers ATLAS-CONF-2015-049

- Ratios of cross sections are expected to cancel out some of the systematic uncertainties
 - compare to SM predictions : test parton luminosities, search for new physics effects
- Ratio to Z production tests qq/gg ratio
 - improves on luminosity (1%), trigger/lepton selection efficiencies (2.2%)
 - uncertainties in Z/tt modelling and backgrounds are similar

- PDF predictions tested mostly compatible with data
 - 2σ tension with prediction based on ABMI2LHC (smaller gg density)

Still large room to explore different ratios in Run 2, also at different s^{1/2}, to constraint further PDFs

9

Run I legacy Eroding the systematics wall

•

see also arXiv: 1602.09024

Measurements are systematics limited but can improve with larger datasets

- study differentially event categories in eµ for signal/background discrimination / modelling sensitivity
- statistical analysis constraints backgrounds and main systematic uncertainties (visible phase space)

Run I legacy Eroding the systematics wall

- Measurements are systematics limited but can improve with larger datasets
- study differentially event categories in eµ for signal/background discrimination / modelling sensitivity
- statistical analysis constraints backgrounds and main systematic uncertainties (visible phase space)

Expect methods to evolve and benefit from higher statistics in Run II

Run I legacy : re-interpreting $\sigma(tt)$

Pole mass extraction

Top mass extraction at fixed order scheme

- need full phase space extrapolation
- benefits from loose selections \Rightarrow flat acceptance
- assume α_s and PDF and compare to theory

 $m_{\rm t}^{
m pole} = 173.8^{+1.7}_{-1.8}~({
m GeV})$ $\Delta m/m=1\%$

Run I legacy : re-interpreting σ(tt) **Pole mass extraction**

- Top mass extraction at fixed order scheme
 - need full phase space extrapolation
 - benefits from loose selections \Rightarrow flat acceptance
 - assume α_s and PDF and compare to theory
- $m_{
 m t}^{
 m pole}$ $= 173.8^{+1.7}_{-1.8}$ (GeV) ∆m/m=1% NEW arXiv: 1603.02303 sub to JHEP σ_{tī} [pb] 280 _{pred}(m, σ_{tī} CMS **D0** σ(tt), 1.96 TeV D0 Note 6453-CONF (2015) 260 0.8 MSTW08nnlo ATLAS σ(tt̄), 7+8 TeV 240 EPJC 74 (2014) 3109 19.7 fb⁻¹ (8 TeV) 0.6 220 JHEP 10 (2015) 121 200 0.4 CMS σ(tt), 7+8 TeV arXiv:1603.02303 (2016) 180 0.2 World combination 160⊢ 5.0 fb⁻¹ (7 TeV) ATLAS, CDF, CMS, D0 -0 170 171 172 173 174 175 176 177 178 150 m, [GeV]

- How far do we need go experimentally?
 - assuming current δσ_{th}^{NNLO}≈5.5%
 <u>PRLII0 (2013) 252004</u>
 - may reach $\delta m_t^{\text{pole}} \approx 0.5\%$ if $\delta \sigma_{\text{exp}} \approx 2\%$

Differential cross section measurements

- Provide additional constraints on m_t , α_s , PDF, pQCD, new physics
 - use final state products to reconstruct top quark candidates
 - compare to theory \Rightarrow "unsmear" data for reconstruction, resolution, parton shower effects
 - Whenever possible find theory-safe definitions (pseudo-top)
 - mimic at particle level the selections and reconstruction algorithms
- Comparisons to fixed order computations require "unsmearing" to parton level

Global event description I

Impacts searches e.g. ttH→invisible/bb / SUSY which are produced in the bulk/tails of tt events

- Early analysis using lepton+jets final state indicates no significant deviation from predictions
 - corrections are made to particle level (no kinematics reconstruction involved)
 - statistics dominated, main systematics from signal model used to derive unfolding corrections
 - test NLO + Parton Shower (PS) generators and tunes used in Run 2

CMS PAS-TOP-15-013

ATLAS-CONF-2015-065 Global event description II NEW PAS-TOP-16-011

16

- Extra jet emissions are mostly regulated by the Parton Shower generators
 - sensitive to matching to matrix-element generators and to shower model
 - predictions from modern generators in agreement with each other within <15%
 - however in extreme regions observe discrepancies which need to be tuned further •

the measured tt invariant mass NEW PAS-TOP-16-011 17

Rate/shape reproduced within uncertainties

Towards probing precisely the measured tt invariant mass 18

NEW PAS-TOP-16-011

Probing the measured tt invariant mass

NEW PAS-TOP-16-011 19

Rate/shape reproduced within uncertainties

- Precise measurements of M(tt) and others depends crucially on the understanding of ME+PS-based predictions
- Current <u>uncertainty at the level of 5-20%</u>
 - ambiguity in data shape corrections
 - dominated by different MC models
- Largest contributions from choice of
 - hadronizer (Pythia8 vs Herwig++)
 - NLO generator (aMC@NLO vs Powheg)
 - ⇒ complement with alternative measurements to constrain PS related uncertainties (e.g. underlying event, jet activity, etc.)
 - Experimentally jet energy scale unc. dominant

Probing individual top quark kinematics NEW PAS-TOP-16-011

20

- Comparison to fixed-order calculations
 - need to unfold to parton level

•

- cancel main systematics by normalizing by $\sigma(tt)$ (shape only)
- Top p_T better described at NNLO (softer in data with respect to NLO+PS predictions)

Run I legacy : differential σ(tt) Further comparisons to NNLO at 8 TeV

- Legacy Run I results compared to fixed order calculations
 - fair agreement between experiments, CMS tends to observe slightly softer $p_T(t)$ and m(tt)(note that bin-to-bin correlations need to be taken into account for a proper χ^2 evaluation)
 - overall good agreement with the NNLO predictions

(data is softer than NLO+PS predictions)

Run I legacy : differential $\sigma(tt)$ **Probing the boosted top quark regime**

Phys. Rev. D93 (2016) 032009 see also <u>CMS-PAS-TOP-14-012</u>

22

- Extension to higher p_T/m(tt) leads to objects merging
- lepton isolation in a p_T-dependent cone (remove if overlapping with jet $\Delta R(\mu, jet_{R=0.4}) < 0.04 + 10 \text{ GeV}/p_{T,\mu}$)
- require I small (R=0.4) jet close to the lepton DR<1.5
- require I large jet (R=1.0) away from other objects (M_{trimmed}>100 GeV, splitting scale >40 GeV)
- Largest uncertaintyies: stats and jet energy scale for R=1.0

Testing the EW couplings through single top production

Latest results on single top quark production: is $V_{tb} \approx I$?

NLO+NNLL predictions (arXiv:1311.0283)

NLO predictions (arXiv:1406.4403,arXiv:1007.1327)

Single top quarks measured in different production modes

- All in agreement with SM predictions: testing directly PDFs and V_{tb}
- t-channel : spans all the energy ranges probed at the LHC

t-channel cross section measurement at 13 TeV I

ATLAS-CONF-2015/079 see also CMS-PAS-TOP-15-004

- t-channel exchange leads to large angular separation between top and light jet
 - pre-selection dominated by tt/W+jets: I lepton $m_T(W)>50$ GeV, I b-tagged jet + I jet ($|\eta|<3.5$)
 - improve discrimination with a multivariate analysis: m_t , m_{jb} , $m_T(W)$, $\eta(j')$ are the most relevant

t-channel cross section measurement at I3 TeV II

ATLAS-CONF-2015/079 see also CMS-PAS-TOP-15-004

Fit the multivariate discriminator for signal strength $\beta = \sigma / \sigma_{th}$

- background normalization is left to float constrained
- systematics determined from pseudo-experiments

 $\sigma(tq) = 133 \pm 25 \text{ pb}$ $\sigma(\bar{t}q) = 96 \pm 24 \text{ pb}$ $\sigma(tq + \bar{t}q) = 229 \pm 48 \text{ pb}$ $\Delta\sigma/\sigma=20\%$

Source	$\Delta \sigma_{t(t)} / \sigma$ (%)
Statistics	5 (5)
Luminosity	5 (5)
MC statistics	6 (6)
Jet/MET	8 (6)
b-tagging	7 (8)
single top model (t/tW,s)	3 (8)

Run I legacy s-channel production

27

- Rare in pp collisions grows much slower with s^{1/2} than other top production modes
- Use multivariate discriminator (CMS) or matrix element approach (ATLAS) to discriminate signal

Run I legacy Associated t+W production

JHEP 01 (2016) 064 see also PRL 112 (2014) 231802

Process can't be isolated beyond NLO

٠

•

- competing with no-resonant (WWbb/WWb), and double resonant (tt) productions
- **Explore cleanest final state** leading to 2 leptons, E_T^{miss}, I b-jet
 - at LO top recoils against a W boson ($p_T^{system} \rightarrow 0$), harder lepton p_T spectrum from $W \rightarrow \ell v$
 - combine different variables in a multivariate discriminator optimised depending on #jets #b-jets

$\sigma_{ m tW}=23.0\pm1.3$	$^{+3.2}_{\mathrm{stat}}$	$_{\rm t} \pm 1.1$	_{lumi} pb	<i>ATLAS</i> √s = 8 TeV, 20.3 fb ⁻¹
Explore fiducial pha	ase space for	combin	$\Delta \sigma / \sigma = 16\%$ ed tt+tW	Measured fiducial Wt+tt cross-section
$\sigma^{\mathrm{fid}}_{\mathrm{t\bar{t}+tW}} = 0.85 \pm 0.0$	$1_{ m stat} {}^{+0.06}_{-0.07 m sys}$	$_{ m st}\pm0.03$	B _{lumi} pb	Predicted fiducial cross-sections:
			Δσ/σ=8.5%	o ^{Wt} at NLO+NNLL, σ ^{if} at NNLO+NNLL
Source	Impact o	n σ (%)		POWHEG-BOX+PYTHIA DR CT10
	inclusive	fiducial		POWHEG-BOX+PYTHIA DS CT10
Statistics	5.8	I.		POWHEG-BOX+HERWIG DR CT10
Luminosity	4.7	3.I		MC@NLO+HERWIG DR CT10
Theory modelling	9.9	4.9		o ^{Wt} and o ^{tf} at NLO
let/MET	10.9	5.2		o ^{Wt} and o ^{ff} at NLO
b-tagging	3	2.3		MC@NLO+HERWIG DR NNPDF 2.3
Lepton efficiencies	I	2.3		0.3 0.4 0.5 0.6 0.7 0.8 0.9 Cross-section [pb]

From signal strengths to EW coupling

- The CKM matrix elements V_{tq} enter in production and decay vertices
- $\sigma(tj + \bar{t}j) = \sum_{q=b,d,s} \alpha_{tq} \cdot |V_{tq}|^2 \cdot \mathcal{B}(t \to Wq)$
- approximate assuming |V_{tb}|»V_{tq}
 and full left-handed decays to Wb
- Expect to improve slowly
 - limited by theory (~3% at NNLO)
 - experimental uncertainties (~10% in Run I)

$$rac{\Delta V_{
m tb}}{V_{
m tb}} = rac{1}{2} \left(rac{\Delta \sigma^{
m obs}}{\sigma^{obs}} \oplus rac{\Delta \sigma^{
m th}}{\sigma^{th}}
ight)$$

ATLAS+CMS Preliminary	LHC <i>top</i> WG	March 2016					
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{tboo}}}$ from single top quark production							
σ _{theo} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (20 PRD81 (2010) 054028	10) 054018,	total than					
$\Delta \sigma_{\text{theo}}$: scale \oplus PDF m _{top} = 172.5 GeV		I_{1} , V, I + (meas) + (theo)					
t-channel:		(1000) = (1000) = (1000)					
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	┝─┼═┼─┥ ÷	1.02 ± 0.06 ± 0.02					
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	}	$0.97 \pm 0.09 \pm 0.02$					
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)		1.020 ± 0.046 ± 0.017					
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	H. I	∕o 0.979 ± 0.045 ± 0.016					
CMS combined 7+8 TeV JHEP 06 (2014) 090	(Herr)	$0.998 \pm 0.038 \pm 0.016$					
CMS 13 TeV CMS-PAS-TOP-15-004 (42 pb ⁻¹)		1.12 ± 0.24 ± 0.02					
ATLAS 13 TeV ATLAS-CONF-2015-079 (3.2 fb ⁻¹)	┣───┤■┤───┤	1.03 ± 0.11 ± 0.02					
Wt:							
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)		$1.03 + 0.15 - 0.18 \pm 0.03$					
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	⊢ → + ● + − − − 1	$1.01^{+0.16}_{-0.13}$ + 0.03 - 0.04					
ATLAS 8 TeV (*) ATLAS-CONF-2013-100 (20.3 fb ⁻¹)		$1.10 \pm 0.12 \pm 0.03$					
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	⊢ I	$1.03 \pm 0.12 \pm 0.04$					
LHC combined 8 TeV ^{1,2} ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009	┣ <mark>──┼┯</mark> ┼──┨	1.06 ± 0.11 ± 0.03					
s-channel: ATLAS 8 TeV ² → arXiv:1511.05980 (20.3 fb ⁻¹)		$0.93 \begin{array}{c} + 0.18 \\ - 0.20 \end{array} \pm 0.04$					
Wt:							
ATLAS 8 TeV ^{1,2} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	⊢ + <mark>=</mark> +1	$1.01 \pm 0.10 \pm 0.03$					
(*) Superseded by results shown be	low the line	¹ including top-quark mass uncertainty ² including beam energy uncertainty					
0.4 0.6	0.8 1 1.2	1.4 1.6 1.8					
If _{LV} V _{tb} I							

29

From signal strength to EW coupling

The CKM matrix elements V_{tq} enter in production and decay vertices

 $\sigma(tj + \bar{t}j) = \sum_{q=b,d,s} \alpha_{tq} \cdot |V_{tq}|^2 \cdot \mathcal{B}(t \to Wq)$

- approximate assuming |V_{tb}|»V_{tq}
 and full left-handed decays to Wb
- Expect to improve slowly
 - limited by theory (~3% at NNLO)
 - experimental uncertainties (~10% in Run I)

 $\frac{\Delta V_{\rm tb}}{V_{\rm tb}} = \frac{1}{2} \left(\frac{\Delta \sigma^{\rm obs}}{\sigma^{obs}} \oplus \frac{\Delta \sigma^{\rm th}}{\sigma^{th}} \right)$

- Complemented by direct measurement of $B(t \rightarrow Wb)$ in tt decays assuming CKM unitarity and no sequential quark generation
- limited by b-tagging efficiency (2% in Run I)

 $\frac{\Delta V_{\rm tb}}{V_{\rm tb}} = \frac{1}{2} \frac{\Delta \varepsilon_{\rm b}}{\varepsilon_{\rm b}}$

30

Conclusions and outlook

Summary

- Latest top production results are showing overall good agreement with SM
 - NLO+PS is in common usage by experiments
 - evidence that needs further tuning aiming to great measurements in Run II
 - comparison to fixed-order computations possible : good agreement with NNLO
 - nota bene : relying so far on MC-based models, be careful for BSM-like re-interpretations
 - probing further single top production in Run II will require further (this year's) statistics
- **Re-interpretation of the production cross-sections for:**
 - precise determination of fundamental parameters: m_t , α_{S_1} EW couplings of the top quark
 - constraining further PDFs
 - search for new physics

To erode the systematics wall in Run II work is required

from both experiment and theory communities

Backup

37

Expect further improvements if top mass or polarisation information is used

benefit from "infinite" Run 2 statistics to probe new physics in top sector

Probing the top kinematics

- Different algorithms can be employed to reconstruct the top kinematics
 - missing degrees of freedom (neutrinos), completed imposing mass constraints
 - pair objects by giving preference to b-tagged jets and using m_{W} , m_T , E_T^{miss} constraints
 - minimize combinatorial misassignments from simulated expectations

٠

Nota bene: normally, underlying hypotheses used in reconstruction are SM tt-oriented

CMS PAS-TOP-15-005

tt system kinematics

Semileptonic final states used

- at least 4 jets p_T>25 GeV (at least 1 b-tagged)
- I b-jet and I light jet with pT>35 GeV
- require minimum reconstruction quality
- Background are estimated from simulation
- used to subtract data before unfolding
- Fair agreement between data and nominal MC
 - rate and shapes fairly well described
- Non-negligible interplay between PS and ME
 - currently one of the limiting uncertainties
 - dependency increases for parton level extrapolation
 - can limit uncertainty up to 25% in $p_T(t)$, $p_T(tt)$, M(tt)

Fixed order theory predictions

approx. NNLO - DiffTop, S.Moch et al

- the uncertainty is the full theory uncertainty, obtained by adding in quadrature PDF and α_s uncertainties
- scale uncertainty (simultaneous variation of ren. and fact. scales by factors 2 and 0.5; the scale is set to m_t = 172.5 GeV)
- variation of mt by +-1 GeV
- approx. N³LO N.Kidonakis
- the uncertainty is only the scale uncertainty simultaneous variation of ren. and fact. scales by factors 2 and 0.5
- the scale is set to $m_t = 172.5 \text{ GeV}$).
- **NLO+NNLL'**, B.Pecjak et al.
- the uncertainty is only the scale uncert, where the factorization scale μ_F is:
- for pT(top): $\mu_F = m_T = sqrt(m_t^2 + p_T(top)^2)$, and it is varied by factors 2 and 0.5
- for m(ttbar): $\mu_F = m(ttbar)/2$, and it is varied by factors 2 and 0.5

NNLO, A.Mitov et al.

- the uncertainty is only the scale uncertainty. The scale (dynamic) is:
- for $p_T(top)$: $\mu = m_T/2$ (varied by factors 2 and 0.5)
- for y(top), pT(ttbar), m(ttbar), y(ttbar): $\mu = H_T/4$

