Extended Scalar Searches at ATLAS & CMS

Allison McCarn (University of Michigan)
On behalf of the CMS and ATLAS Collaborations

Rencontres de Moriond EW 2016

Beyond the Standard Model

BSM physics was not observed in run-1, but there are still many possible models to be investigated in run-2.

Higgs Triplet:

An additional scalar triplet results in charged, doubly-charged, and neutral bosons.

2HDM+S:

Two Higgs Doublets and an additional complex singlet (e.g. NMSSM)

The observed Higgs boson at 125 GeV could be only the beginning.

A few examples out of many...

Electroweak Singlet (EWS):

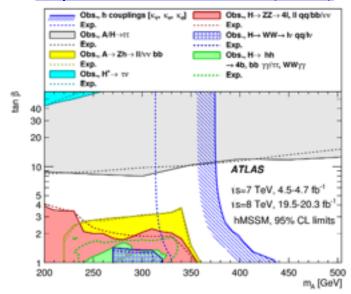
Additional singlet, resulting in 2 CP-even bosons.

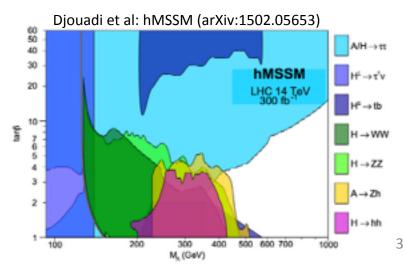
Two-Higgs Double Models (2HDM):

Additional Higgs Doublet gives rise to 5 Higgs bosons (H,h,A,H±)

Minimal Supersymmetric Standard Model:

Higgs Sector is Type-II 2HDM. Current common benchmark is hMSSM.


Run-1 Results/Run-2 Prospects


- Many searches were performed in run-1, with 7 and 8 TeV centre-of-mass energy at the LHC, but physics beyond the Standard Model has not yet been observed.
- An example of where we stand and hopes for the future of the LHC can be seen in the hMSSM overlay and prospect plots.
 - Much parameter space is excluded, but there is still room for high mass Higgs to be found!

In 2015, ATLAS collected 3.2 fb⁻¹ and CMS collected 2.8 fb⁻¹ of data at 13 TeV!

This is already enough in many cases to exceed run-1 sensitivity!

Phys. Rev. D 92, 092004 (2015)

Beyond the Standard Model Searches in this Presentation

Many searches for run-2, as well as a few final searches for run-1, from ATLAS, CMS, and both.

Charged Higgs

H[±]→ τv (13 TeV) H[±]→tb (8 TeV) $\Phi^{\pm\pm}\Phi^{\pm\pm}$ |||v/4| (8 TeV)

Neutral Higgs

H→ττ (13 TeV)

Higgs-to-Higgs

H→2a (8 TeV)
H→ZA (13 TeV)
A→Zh(125) (13 TeV)

Di-Higgs

H \rightarrow hh \rightarrow bbγγ (13 TeV) H \rightarrow hh \rightarrow bbττ (8/13 TeV)

Dibosons

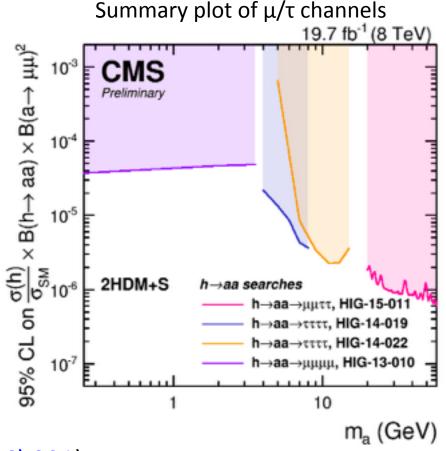
H→ZZ→4I (13 TeV) H→ZZ→IIvv (13 TeV) Boosted Resonances (13 TeV) H→ZZ→IIqq (13 TeV) ZH, H→inv (13 TeV) X→Z γ (13 TeV)

Recent $\sqrt{s} = 8$ TeV Results

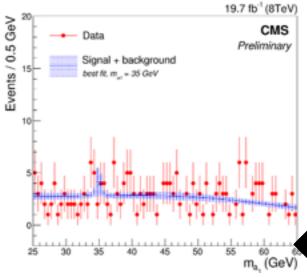
2HDM+S: Search for $h(125) \rightarrow 2a$

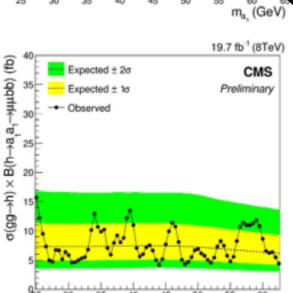
- In a 2HDM+S model, there are 2 singlet states:
 - CP-odd scalar a
 - CP-even s
- BR(h→BSM) < 0.34, so the decay to 2a can be sizeable.
- Recent results from CMS for $h\rightarrow 2a\rightarrow 2b2\mu$ and $h\rightarrow 2a\rightarrow 2\mu 2\tau!$

Current channels include:


 $h\rightarrow 2a\rightarrow 2b2\mu$ (CMS-PAS-HIG-14-041)

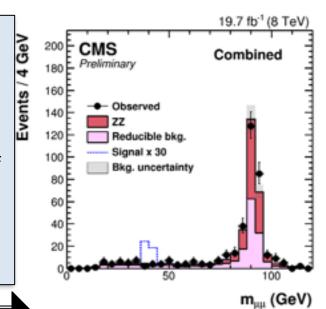
h \rightarrow 2a \rightarrow 4 μ (CMS:<u>Phys. Lett. B 752 (2016) 221</u>)


h \rightarrow 2a \rightarrow 2μ2τ (CMS-PAS-HIG-15-011, ATLAS: Phys. Rev. D92 (2015) 052002)


h \rightarrow 2a \rightarrow 4 τ (CMS-PAS-HIG-14-022, CMS:JHEP 01 (2016) 079)

 $h\rightarrow 2a\rightarrow 4\gamma$ (ATLAS: CERN-PH-EP-2015-187)

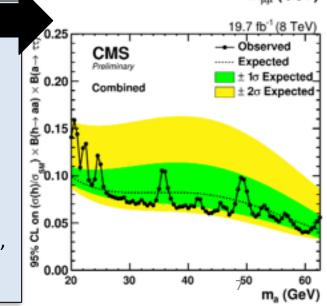
2HDM+S: Search for $h(125) \rightarrow 2a$


m_{a.} (GeV)

h→2a→2b2µ:

2 b-jets, 2 μ , E_T^{miss} significance < 6 $|M_{bbuu}|$ - 125 < 25 GeV

Signal Modeling: Weighted sum of Voigt profile and Crystal ball.


Background Modeling: Polynomial functions, fit to m_{uu} in data.

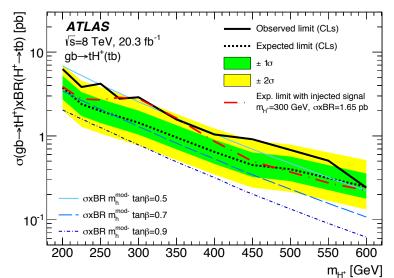
$h\rightarrow 2a\rightarrow 2\mu 2\tau$

5 final states: $\mu\mu\tau_{e}\tau_{e}$, $\mu\mu\tau_{\mu}\tau_{e}$, $\mu\mu\tau_{had}\tau_{e}$, $\mu\mu\tau_{had}\tau_{had}$ $|M_{\tau\tau\mu\mu} - 125| < 25 \text{ GeV}$ $(M_{\mu\mu} - M_{\tau\tau})/M_{\mu\mu} < 0.8$ $|M^{vis}_{ee\mu\mu} - 125| > 15 \text{ GeV}$

Irreducible backgrounds from MC, reducible from data-driven methods.

CMS: JHEP 11 (2015) 018

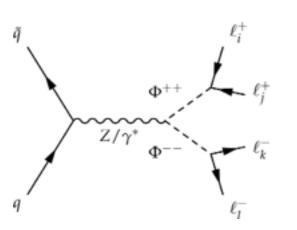
2HDM: Search for H[±] →tb

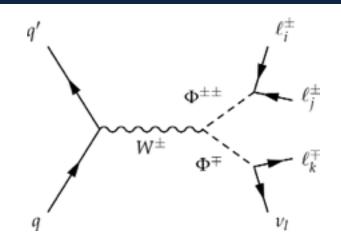

Predicted in models with extended Higgs Sector (e.g. 2HDM):

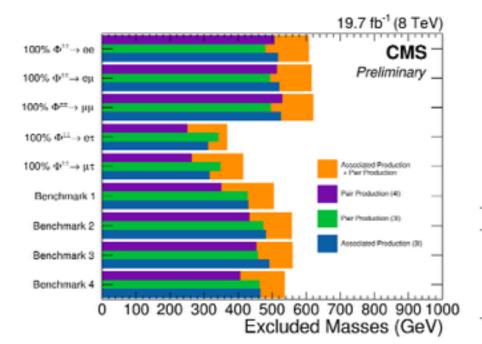
- ✓ H[±] dominantly produced in association with a top quark.
- √ H[±]→tb is a dominant decay mode for heavy H[±].

Search in **lepton+jets** final state. Fit is performed on 5 regions:

- H_T^{had} in 4 Control Regions: [4j(2b),
 5j(2b), ≥6j(2b), 4j(≥3b)]
- BDT in 1 Signal Region: [≥5j(≥3b)


BDT includes H_t^{had} , lead jet p_T , m_{bb} of 2 b-jets closest in ΔR , second Fox-Wolfram moment, and average ΔR between all b-jet pairs.





Higgs Triplets: Search for H^{±±}

- H^{±±} is predicted by models with a Higgs triplet.
- This search is for associated production or pair-produced left-handed H^{±±} into 3 or 4 leptons, respectively.

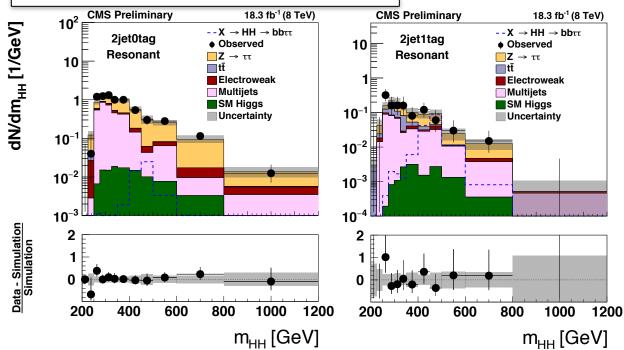
Channel	Expected Signal		Expected	Observed	
	AP	AP PP Backgrou			
$100\% \rightarrow ee$	3.63	5.44	0.28	0	
$100\% \rightarrow e\mu$	3.87	6.07	0.07	0	
$100\% \rightarrow \mu\mu$	4.14	7.15	0.04	0	
$100\% \rightarrow e\tau$	0.79	1.36	1.22	0	
$100\% \rightarrow \mu \tau$	0.86	2.00	1.16	1	

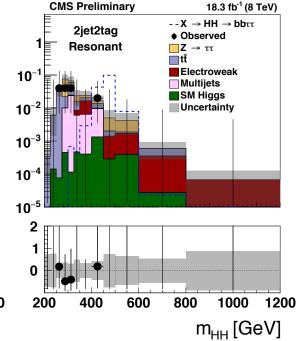
Benchmark Point	ee	еµ	eτ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	1/2	0	0	1/8	1/4	1/8
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6

Scalar Resonance: H→hh→bbτ_{had}τ_{had}

 $_2$ hadronic τ_{had} and 2 jets $80 < m_{\tau\tau} < 140$ GeV and $80 < m_{jj} < 170$ GeV m_{HH} calculated using a kinematic fit

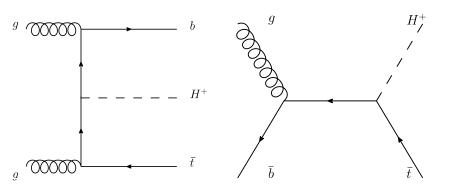
Backgrounds


Multi-jet: Data-driven methods $Z/\gamma^* \rightarrow \tau_{had}\tau_{had}$: Embedding of $\mu\mu$ data events Others: Simulation


Fit to three regions with 0, 1, or 2 b-tagged jets.

See Seth Zenz's talk for non-resonant analysis.

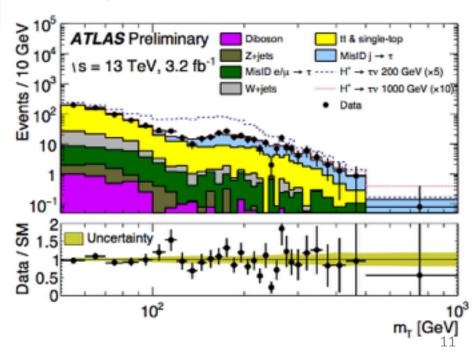
 m_{χ} [GeV]



Vs = 13 TeV Searches: Fermionic Decays

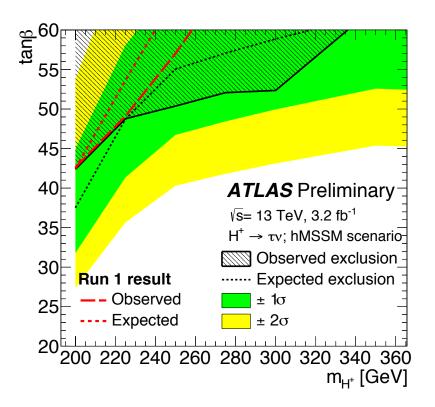
Search for H[±] →τν

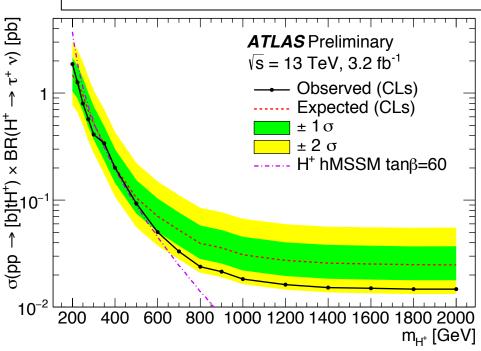
H[±] predicted in 2HDM/MSSM:


- ✓ H[±] dominantly produced in association with a top quark.
- √ H[±]→τν decay channel represents a clean signature and substantial BR (~10%) in several MSSM benchmarks.

Search is for the decays:

$$g\bar{b} \rightarrow [\bar{t}] [H^+] \rightarrow [q\bar{q}\bar{b}] [\tau^+_{\text{had-vis}} + \nu_{\tau}]$$
 $gg \rightarrow [\bar{t}b] [H^+] \rightarrow [(q\bar{q}\bar{b})b] [\tau^+_{\text{had-vis}} + \nu_{\tau}]$
with the final discriminating variable:


$$m_{\rm T} = \sqrt{2p_{\rm T}^{\tau}E_{\rm T}^{\rm miss}(1-\cos\Delta\phi_{\tau_{\rm had-vis},{\rm miss}})}$$


Search for $H^{\pm} \rightarrow \tau \nu$

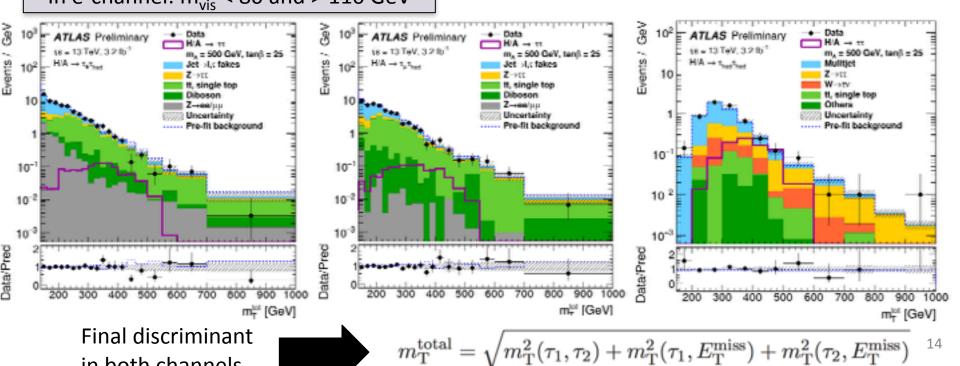
Backgrounds:

- Jet → τ fakes (multi-jet: data-driven)
- Events with true τ (tt, W+jets: from MC, validated in CR)
- Events with lepton → τ fakes (top, V+jets, diboson: Shape from MC, norm. from data. ~5% of background.)

Event Selection E_T^{miss} trigger ≥3 jets including ≥1 b-tagged jet 1 τ and no e or μ E_T^{miss} > 150 GeV m_τ > 50 GeV

Search for H/A →ττ

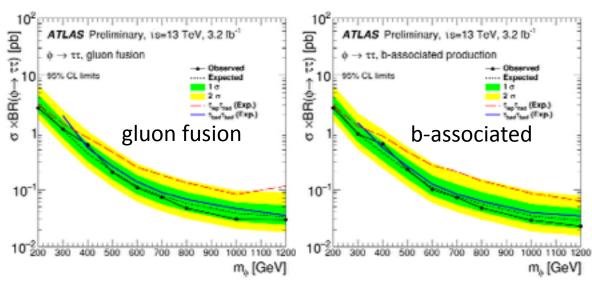
H \rightarrow ττ provides sensitivity in MSSM at high tanβ, and in 2HDM at the alignment limit. Analysis targets two channels with different τ decay modes.

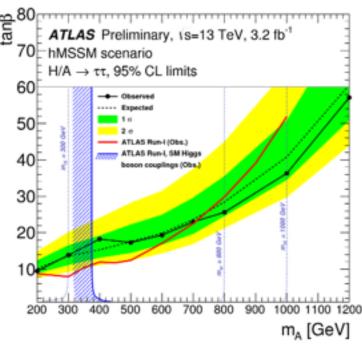

τ_{lep}τ_{had} Event Selection

Single lepton triggers 1 τ and 1 OS e/ μ and $\Delta \phi$ (τ, e/ μ) > 2.4 $M_{\tau}(e/\mu, MET) < 40 \text{ GeV or} > 150 \text{ GeV}$ In e-channel: m_{vis} < 80 and > 110 GeV

in both channels

τ_{had}τ_{had} Event Selection

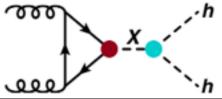

Single τ_{had} trigger $2 \tau_{had}$ with OS charge $\Delta \Phi(\tau_{had,1}, \tau_{had,2}) > 2.7$

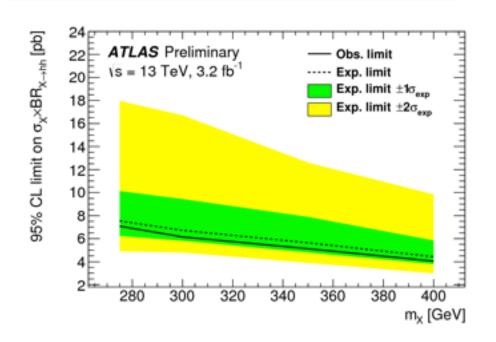


Search for H/A →ττ

Backgrounds

- ✓ True τ backgrounds (e.g. $Z \rightarrow \tau \tau$, tt) are taken from simulation.
- ✓ **Jet→t backgrounds** (e.g. W+jets, multi-jets) are estimated using data-driven methods.


No evidence for BSM Higgs, but sensitivity already exceeds run-1.


√s = 13 TeV Searches: Di-Higgs

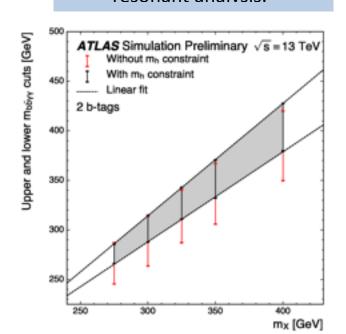
Search for H→hh→bbγγ

hh production can be resonantly enhanced by many BSM models (Singlet, MSSM, etc.).

- bbγγ chosen due to high BR(h→bb) and clean γγ signature.
- ATLAS has also searched for hh→4b, covered in Max Bellomo's talk tomorrow.

Event Selection

 2γ within $105 < m_{\gamma\gamma} < 160 \text{ GeV}$


2 central jets within $95 < m_{jj} < 135 \text{ GeV}$ 2 (0) b-tag as SR (CR) at 85% efficiency

bb 4-momenta scaled by m_h/m_{hh}

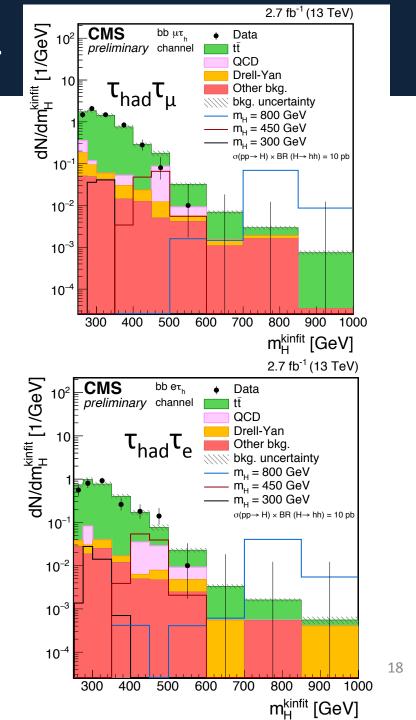
$$|m_{\nu\nu} - m_h| < 2\sigma(m_{\nu\nu})$$

M_{bbvv} within window of 95% signal efficiency

See Seth Zenz's talk for nonresonant analysis.

Search for H→hh→bbττ

Search for three channels:


 $\tau_{had}\tau_{\mu}$, $\tau_{had}\tau_{e}$ and $\tau_{had}\tau_{had}$

Exactly two OS objects, as above 2 b-tagged jets

Final mass variable m_H constructed using a kinematic fit.

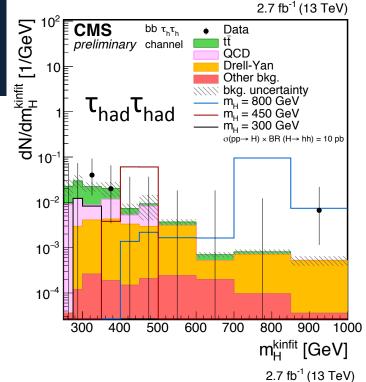
Backgrounds

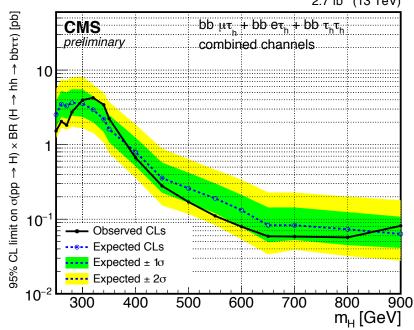
- Multi-jet: estimated using data-driven methods
- Z+jets: MC corrected using data control regions.
- tt: MC, shape corrected by top pT reweighting.
- Others (W+jets, single top, diboson) from MC.

Search for H→hh→bbττ

Search for three channels:

 $\tau_{had}\tau_{\mu}$, $\tau_{had}\tau_{e}$ and $\tau_{had}\tau_{had}$

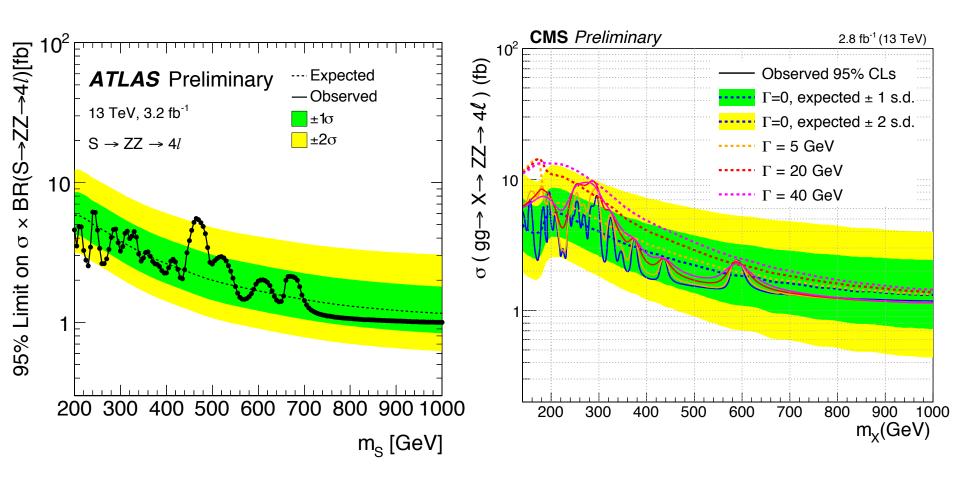

Exactly two OS objects, as above 2 b-tagged jets


Final mass variable m_H constructed using a kinematic fit.

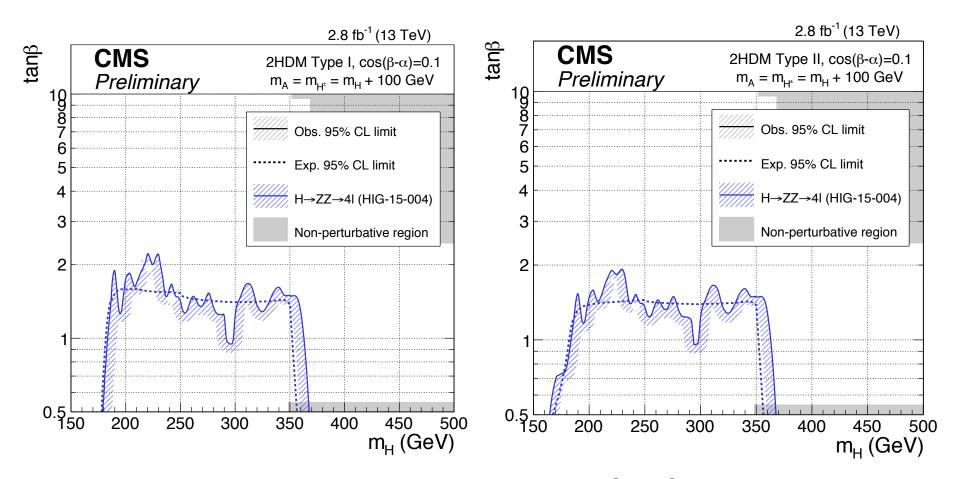
Backgrounds

- Multi-jet: estimated using data-driven methods
- Z+jets: MC corrected using data control regions.
- tt: MC, shape corrected by top pT reweighting.
- Others (W+jets, single top, diboson) from MC.

See Seth Zenz's talk for nonresonant analysis.



√s = 13 TeV Searches: Higgs to Bosons

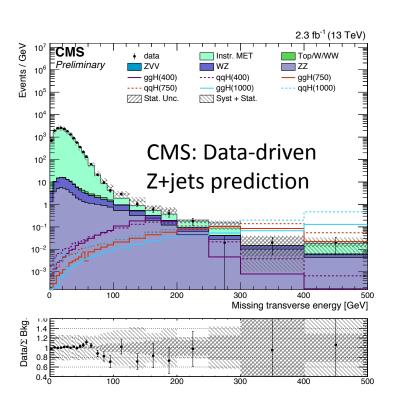

Search for $H \rightarrow ZZ \rightarrow 4I$

The 4l final state gives a clean signature with low background, predicted in EWS and 2HDM. The search is for a resonance of $m_H = 140$ (200)-1000 GeV for CMS (ATLAS).

Search for $H \rightarrow ZZ \rightarrow 4I$

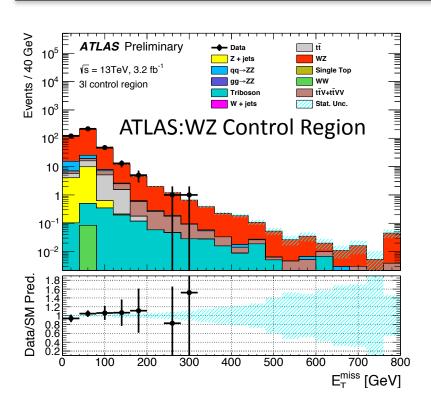
The results have also been interpreted in Type-I and Type-II 2HDM.

Search is based on selection from h(125) \rightarrow ZZ \rightarrow 4l analysis.


Search for $H \rightarrow ZZ \rightarrow IIvv$

ATLAS-CONF-2016-012

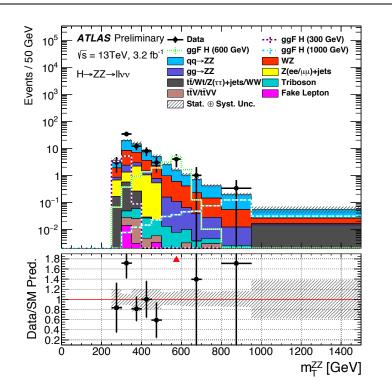
Searching for an additional scalar boson, as predicted in EWS/2HDM.


The search is for a narrow resonance of $m_{\rm H}$ = 300-1000 GeV (ATLAS) or 200-1500 GeV (CMS).

In both cases, search is for 2 leptons (e or μ) and high E_T^{miss}

Backgrounds

- ✓ ZZ/WZ: From simulation, WZ scaled using datadriven methods (ATLAS)
- ✓ Others: Predicted using data-driven methods.


Search for $H \rightarrow ZZ \rightarrow IIvv$

Event Selection

2 same flavor, opposite sign charge leptons $76 < m_{_{||}} < 106$ GeV and $E_{_{T}}^{miss} > 120$ GeV $\Delta R_{_{||}} < 1.8$ and $\Delta \varphi(Z, E_{_{T}}^{miss}) > 2.7$ Fractional $p_{_{T}}$ difference < 0.2 $\Delta \varphi(\text{jet (pT} > 100 \text{ GeV}), E_{_{T}}^{miss}) > 0.4$ $Z_{_{PT}}/M_{_{T}} < 0.7$ and no b-jet

Final Discriminant:

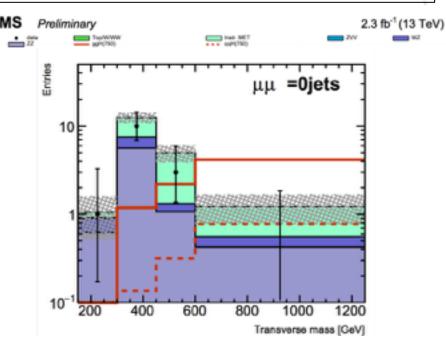
$$(m_{\mathrm{T}}^{ZZ})^2 \equiv \left(\sqrt{m_Z^2 + \left|p_{\mathrm{T}}^{\ell\ell}\right|^2} + \sqrt{m_Z^2 + \left|E_{\mathrm{T}}^{\mathrm{miss}}\right|^2}\right)^2 - \left|\vec{p}_{\mathrm{T}}^{\ell\ell} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^2$$

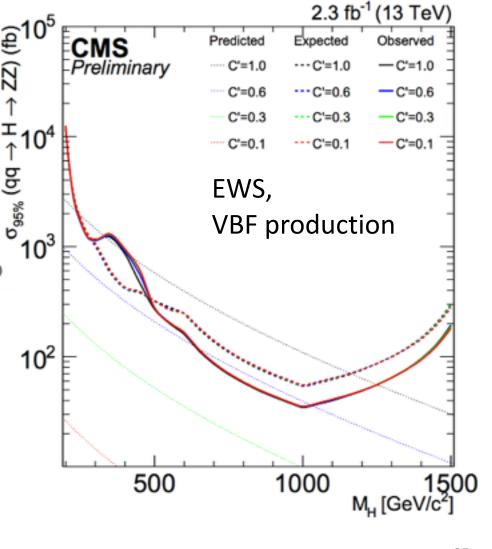
Search for $H \rightarrow ZZ \rightarrow IIvv$

Event Selection

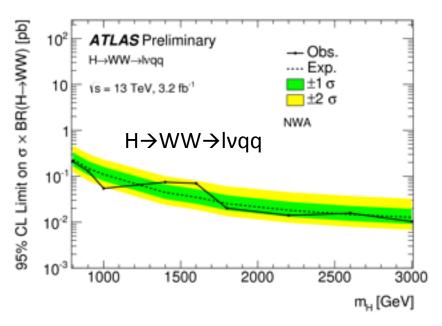
2 same flavor, opposite sign charge leptons $E_{_T}^{_{miss}}$ > 125 GeV and $\Delta \varphi (nearest jet, E_{_T}^{_{miss}})$ > 0.5 No b-tagged jets

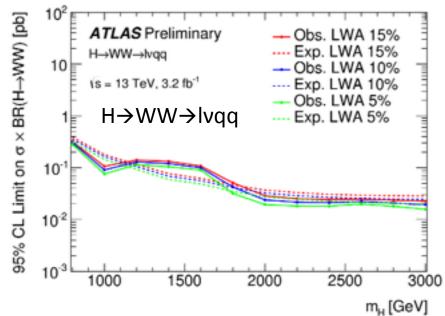
3 Signal Region Categories:


VBF: \geq 2 forward jets with $|\Delta \eta| > 4$ and m > 500 GeV.


≥ 1 jets: at least 1 jet, fails VBF

= 0 jets: No jets.

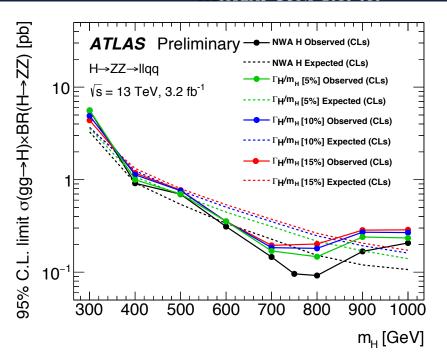

Final Discriminant:

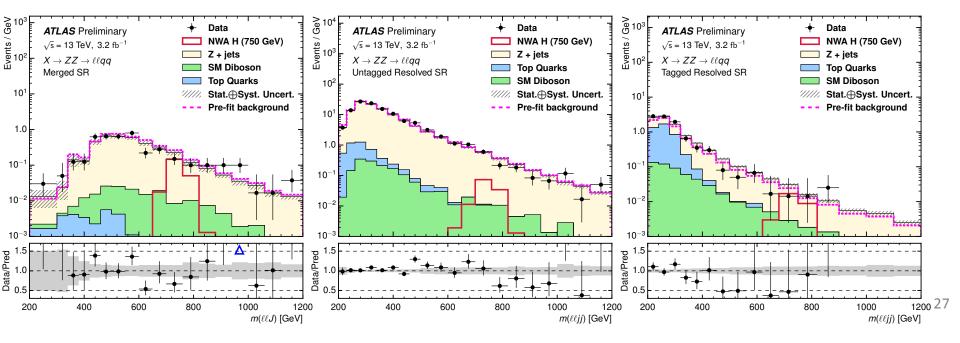

$$M_T^2 = \left(\sqrt{p_T(\ell\ell)^2 + M(\ell\ell)^2} + \sqrt{E_T^{miss}^2 + M_Z^2}\right)^2 - (\vec{p}_T(\ell\ell) + \vec{E}_T^{miss})^2$$

- Several diboson resonance searches in ATLAS have also been interpreted in terms of a heavy Higgs-like boson.
 - For details of the analyses, see Max Bellomo's talk Thursday.
- Limits are set up to 3 TeV:
 - For H→WW→lvqq, H→ZZ→llqq and H→ZZ→vvqq
 - In the narrow width approximation, as well as for widths ranging from 5-15%.
 - No evidence for boosted scalar resonances has been found in any channel.

Search for $H \rightarrow ZZ \rightarrow IIqq$

Merged Analysis


2 same flavor leptons and 1 large-R jet ($p_T > 200 \text{ GeV}$) consistent with Z decay $P_T(II) > 0.3 m_{II}$


Resolved Analysis

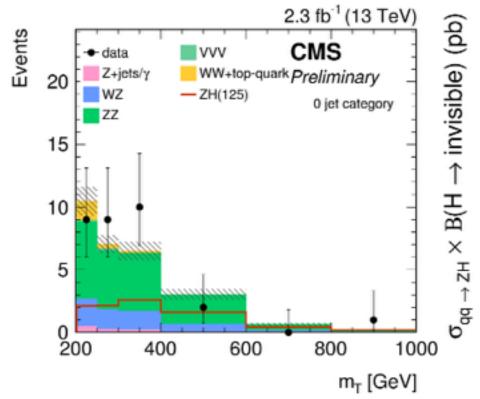
2 same flavor leptons and 2 small-R jets consistent with Z decay

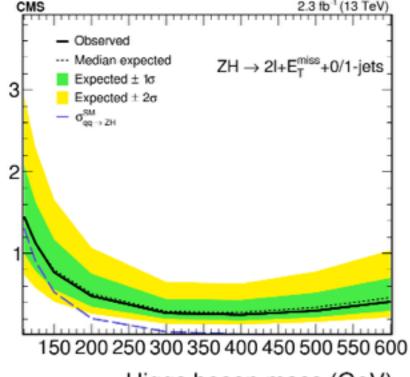
$$\sqrt{p_T^2(\ell\ell) + p_T^2(jj)} / m_{\ell\ell jj} > 0.5$$

Two categories: 2 and <2 b-tagged jets

Motivated by supersymmetry, search is for a scalar boson, *H*, with m=110-600 GeV, decaying to invisible particles.

Analysis Selection


2 same flavor OS e or μ $|m_{||}-m_{z}| < 15$ GeV and $p_{T}^{||} > 60$ GeV ≤ 1 jet, no b-jets or soft muons $E_{T}^{miss} > 100$ GeV, $\Delta \phi(II, E_{T}^{miss}) > 2.8$ and $|E_{T}^{miss} - p_{T}^{||}/p_{T}^{||} < 0.4$

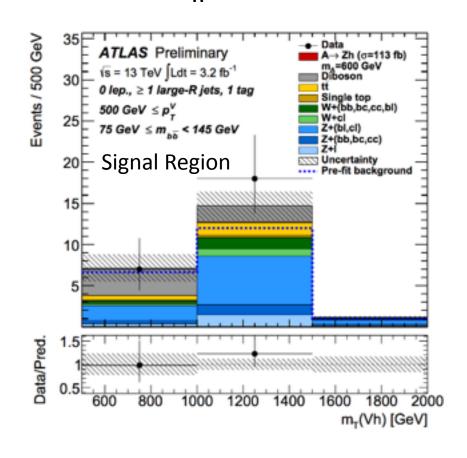

Search for ZH, H→inv

Final discriminating variable is:

$$m_{\mathrm{T}} = \sqrt{2 p_{\mathrm{T}}^{\mathrm{ll}} E_{\mathrm{T}}^{\mathrm{miss}} \left(1 - \cos \Delta \phi(\mathrm{ll}, E_{\mathrm{T}}^{\mathrm{miss}})\right)}$$

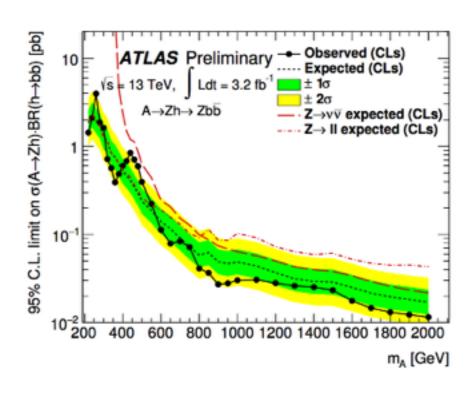
which must be > 200 GeV.

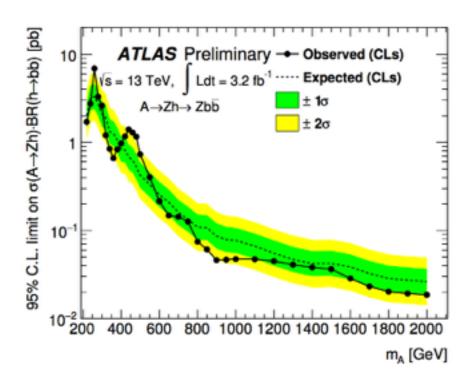
Search for $A \rightarrow Zh(125)$, $h \rightarrow bb$


Searching for an additional pseudoscalar boson, as predicted in 2HDM. The search is for a narrow resonance of $m_H = 200-2000$ GeV.

Analysis Strategy

- Targeting A→Zh→vvbb/IIbb
- Makes use of categories:
 - 1. 0/2-leptons
 - p_T^z < or > 500 GeV (defining the resolved/ boosted transition)
 - 3. 1/2 b-tagged jets
- Final discriminant is invariant m_{IIbb} for 2-lepton and for 0-lepton:


$$m_{T,Zh} = \sqrt{(E_T^h + E_T^{miss})^2 - (\vec{p}_T^h + \vec{E}_T^{miss})^2}$$


See talk in YSF4 by Carlo Pandini for more details.

Dominant backgrounds of Z+jets and ttbar are validated and constrained in control regions.

Search for $A \rightarrow Zh(125)$, $h \rightarrow bb$

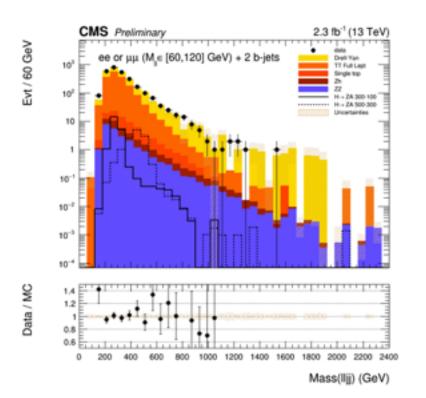
(a) Pure gluon fusion production

(b) Pure b-quark associated production

Limits on ggF and b-associated production from simultaneous binned-likelihood fit for signal and control regions.

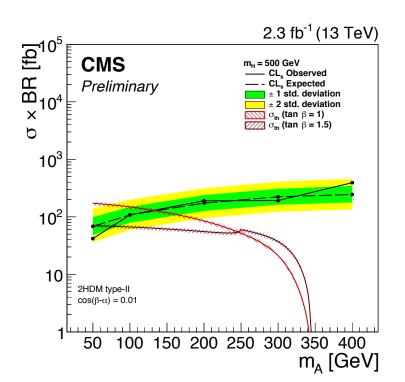
Search for $H \rightarrow ZA$, $Z \rightarrow II$ and $A \rightarrow bb$

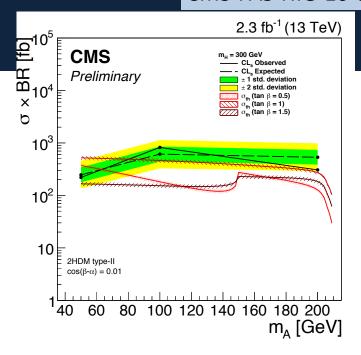
Motivated by 2HDM with twisted custodial symmetry, which gives a heavier scalar H and a lighter pseudoscalar A boson.

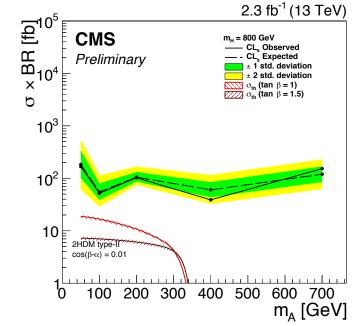

Evt / 20 GeV 10-2 10 Data / MC Mass(ii) (GeV)

Analysis Strategy

A signal region (S) is defined for each m_A - m_H hypothesis in the plane of m_{hh} - m_{llhh}

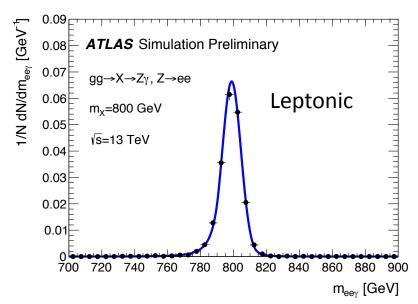

tt and Drell-Yan processes are corrected through a fit to data of the $m_{_{\rm II}}$ distribution for events not in S.

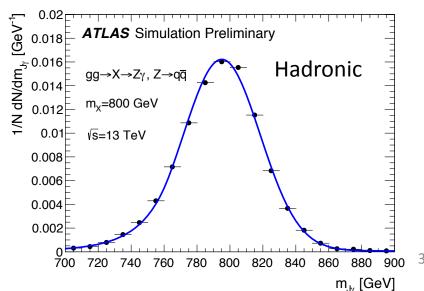

The final limit is calculated from the single bin of S.



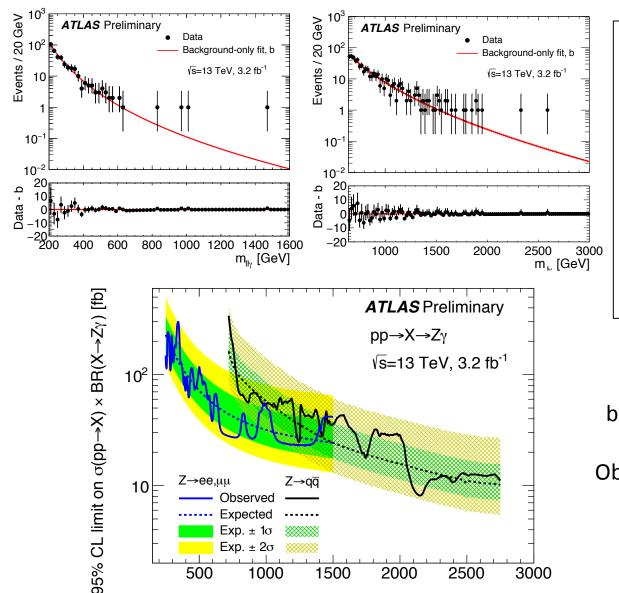
Search for $H \rightarrow ZA$, $Z \rightarrow II$ and $A \rightarrow bb$

Limits are set on cross section times branching ratio for three m_H hypotheses, as a function of m_A .




Search for $X \rightarrow Z\gamma$

Searching for an additional neutral boson (X), with a narrow width.


Analysis Strategy

- Z→II (250-1500 GeV):
 - -2 same flavor, opposite sign leptons consistent with Z.
- Z→qq (720-2750 GeV):
 - –Jets reconstructed as a single large-radius jet with pT > 200 GeV.
- Both channels use Zγ invariant mass as a final discriminant.

Search for $X \rightarrow Z\gamma$

10²

10

Exp. $\pm 1\sigma$ Exp. $\pm 2\sigma$

1000

500

1500

 $pp \rightarrow X \rightarrow Z\gamma$

2000

2500

 \sqrt{s} =13 TeV, 3.2 fb⁻¹

Background Modeling

- Dominant background is continuum production of Z+y (leptonic) and y +jets events (hadronic).
- In both, background is smoothly falling spectrum as a function of m_{inv}, parameterized as:

$$f_{\text{bkg}}(m_{\text{inv}}) = \mathcal{N}(1-x^k)^{p_1+\xi p_2}x^{p_2}$$

Largest deviation from background is 2σ at 350 GeV.

3000

m_v [GeV]

Observed limits range between 295 fb at $m_X = 340 \text{ GeV to}$

In Summary

 There have already been a variety of searches for extended scalars at 13 TeV, but this is just the beginning!

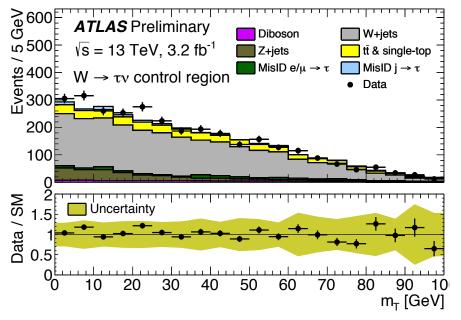
- Searches investigate a variety of models (2HDM, 2HDM+S, MSSM, etc.) and many final states.
- 2016 should be an interesting year for Beyond-Standard-Model searches in high energy physics!

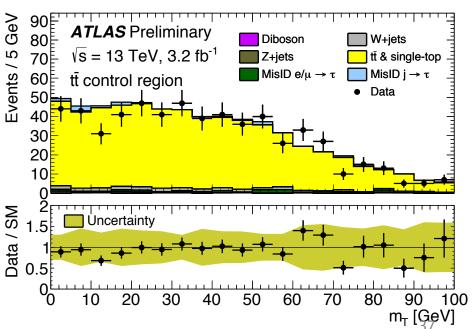
Backup

Search for $H^{\pm} \rightarrow \tau \nu$

- The Background contributions are split up by the origin of the τ in the event:
 - Jet → τ fakes (data-driven)
 - Events with true τ (from MC, validated in CR)
 - Events with lepton → τ fakes (Shape from MC, norm. from data)

Event Selection


E_T^{miss} trigger

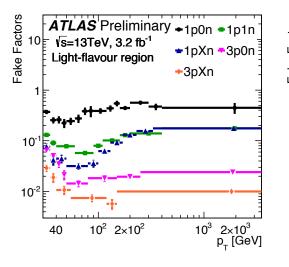

≥3 jets including ≥1 b-tagged jet

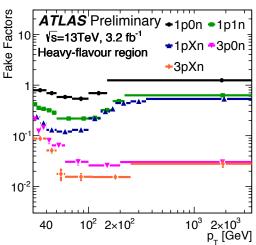
1 τ and no e or μ

E_T^{miss} > 150 GeV

m_T > 50 GeV

Search for $H^{\pm} \rightarrow \tau \nu$

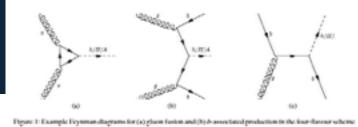

A fake factor (FF) is measured in a multijet control region, defined as:


$$FF = \frac{N_{fail}}{N_{pass}}$$

where N_{fail} event τ candidates fail the full τ selection, and N_{pass} pass.

FF parameterized in:

- $\checkmark \tau p_T$,
- √ τ decay mode,
- ✓ Light/heavy flavor bins based on b-tagging algorithm.



Final Contribution Defined by:

$$N_{\text{fakes}}^{\tau_{\text{had-vis}}} = \sum_{i} N_{\text{anti}-\tau_{\text{had-vis}}}(i) \times FF(i),$$

Search for H/A → ττ

H \rightarrow ττ provides sensitivity in MSSM at high tanβ, and in 2HDM at the alignment limit. Analysis targets two channels with different τ decay modes.

τ_{lep}τ_{had} Event Selection

Single lepton triggers $1 \text{ medium } \tau, \, p_T > 20 \text{ GeV}$ $1 \text{ medium, isolated e/} \mu, \, p_T > 30 \text{ GeV}$ $\tau \text{ and e/} \mu \text{ of opposite sign charge}$ $\Delta \varphi(\tau, \, e/\mu \,) > 2.4$ $M_{\tau}(e/\mu, \, \text{MET}) < 40 \text{ GeV or } > 150 \text{ GeV}$

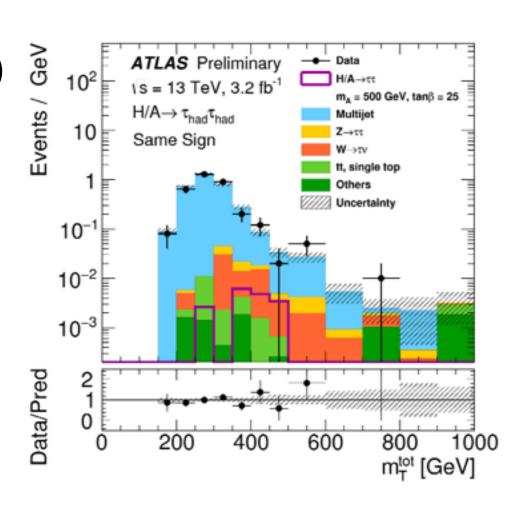
In e-channel: m_{vis} < 80 and > 110 GeV

τ_{had}τ_{had} Event Selection

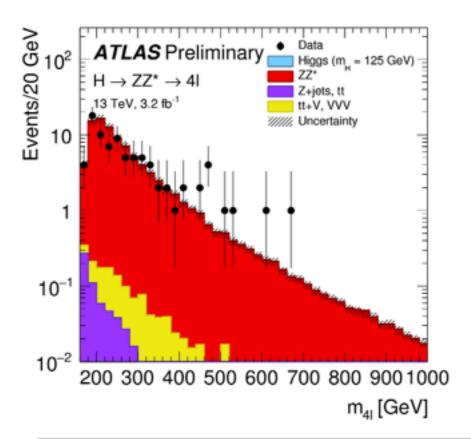
Single τ_{had} trigger $2 \, \tau_{had} \, \text{with OS charge}$ No loose e/μ $\Delta \varphi(\tau_{had,1}, \tau_{had,2}) > 2.7$ Leading τ_{had} is medium, trigger-matched, p_T $> 135 \, \text{GeV}$ Subleading τ_{had} is loose, $p_T > 55 \, \text{GeV}$

Final discriminant in both channels

$$m_{\rm T}^{\rm total} = \sqrt{m_{\rm T}^2(\tau_1, \tau_2) + m_{\rm T}^2(\tau_1, E_{\rm T}^{\rm miss}) + m_{\rm T}^2(\tau_2, E_{\rm T}^{\rm miss})}$$


Search for H/A $\rightarrow \tau\tau$: $\tau_{lep}\tau_{had}$ Backgrounds

True τ backgrounds (Z-> $\tau\tau$, tt) are taken from simulation. Jet \rightarrow t backgrounds are estimated using "Combined Fake Factor" Method


Search for H/A $\rightarrow \tau$: $\tau_{had} \tau_{had}$ Backgrounds

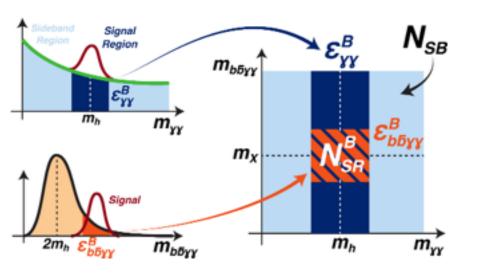
- ✓ True τ backgrounds (Z->ττ, tt) are taken from simulation.
- ✓ Jet→τ backgrounds are estimated by applying fake rate from data in place of simulated τ ID response.
- ✓ Multi-jet backgrounds are estimated using a fake factor measured in a dijet CR.

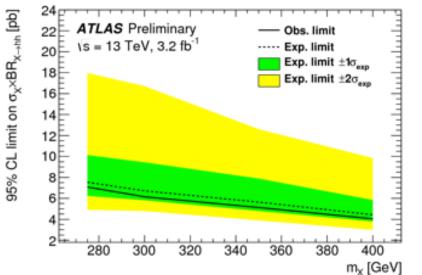
Background estimation is validated in same-sign control region.

ATLAS: $H \rightarrow ZZ \rightarrow 4I$

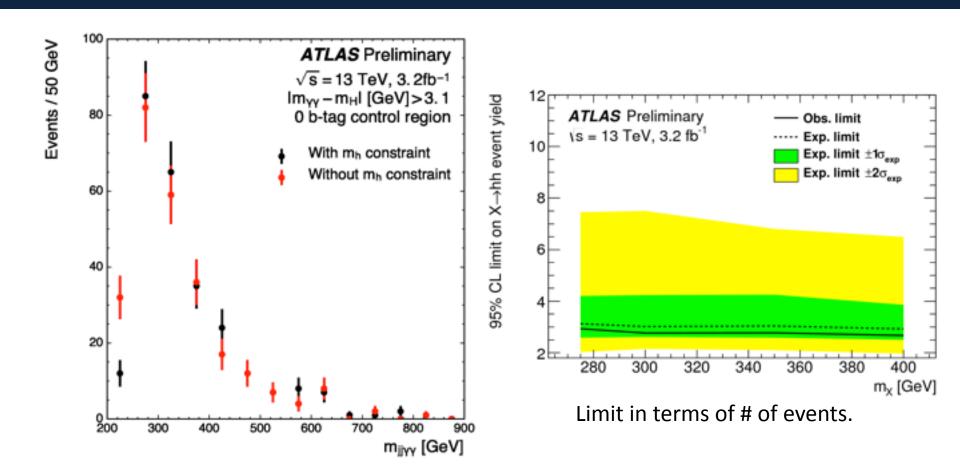
Expected and Observed events for the ATLAS high mass H->ZZ->4l analysis.

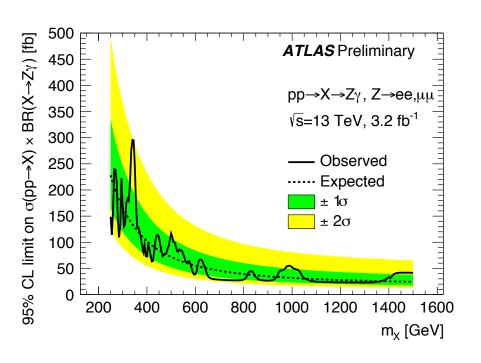
Final state	ZZ^*	$Z + \text{jets}, t\bar{t}, WZ$	$t\bar{t}V,VVV$	Expected	Observed
4μ	22.1 ± 2.2	0.05 ± 0.02	0.23 ± 0.01	22.4 ± 2.2	20
$2e2\mu$	16.9 ± 1.6	0.05 ± 0.02	0.21 ± 0.01	17.2 ± 1.6	17
$2\mu 2e$	18.1 ± 2.6	0.06 ± 0.02	0.19 ± 0.01	18.3 ± 2.6	13
4e	13.9 ± 2.1	0.06 ± 0.02	0.18 ± 0.01	14.1 ± 2.1	12
Total	71 ± 8	0.23 ± 0.04	0.81 ± 0.04	72 ± 8	62


Search for H→hh→bbyy


Background:

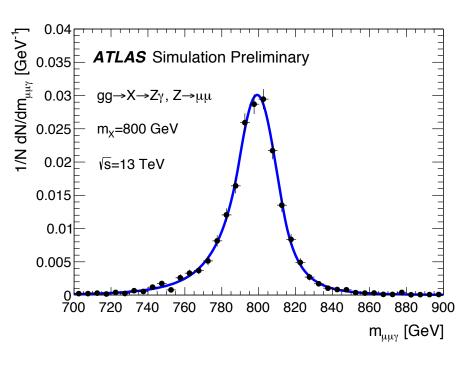
- Continuum from data
- SM h & hh from MC
- Cut-and-count in 95%
 m_{bbγγ} window with data-driven continuum
 background:

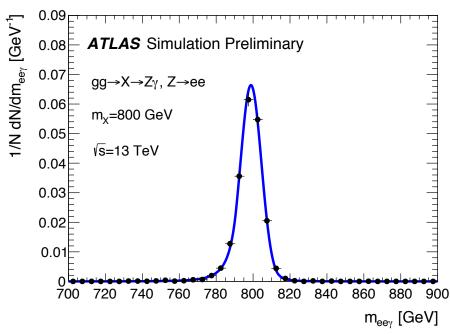

$$N_{SR}^B = N_{SB} \frac{\varepsilon_{m_{\gamma\gamma}}}{1 - \varepsilon_{m_{\gamma\gamma}}} \varepsilon_{m_b \bar{b} \gamma \gamma}$$

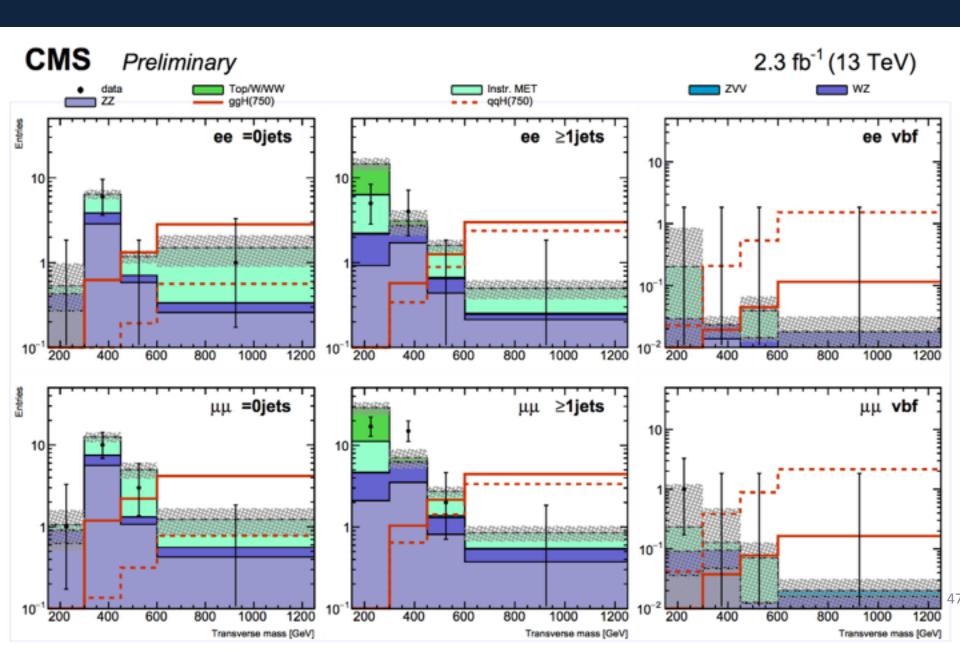


Search for H→hh→bbγγ

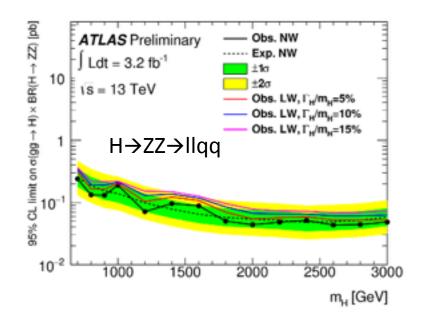
Mass constraint does not dramatically change the background shape.

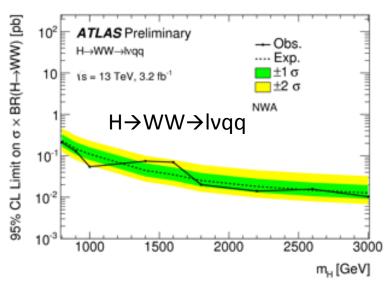

Search for $X \rightarrow Z\gamma$

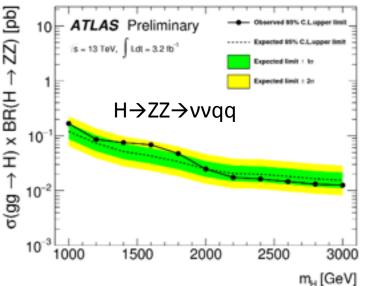



Limits split into leptonic and hadronic.

Search for $X \rightarrow Z\gamma$

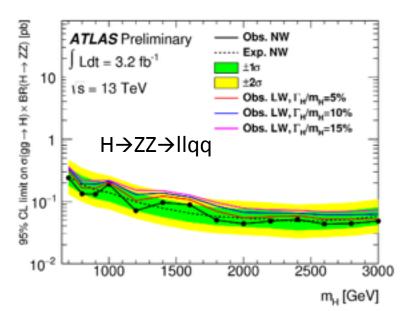


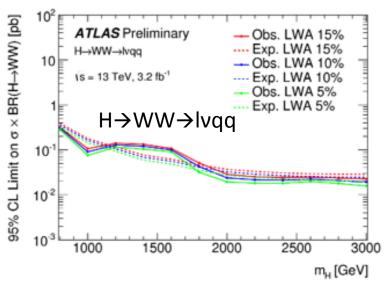

Search for H→IIvv

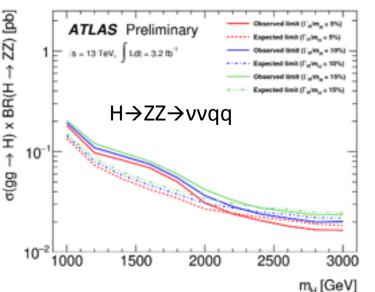


ATLAS-CONF-2015-075
ATLAS-CONF-2015-068

- Several diboson resonance searches in ATLAS have also been interpreted in terms of a heavy Higgs-like boson.
 - For details of the analyses, see Max Bellomo's talk Thursday.
- Limits are set in the narrow width approximation, as well as for widths ranging from 5-15%.







ATLAS-CONF-2015-075
ATLAS-CONF-2015-068

- Several diboson resonance searches in ATLAS have also been interpreted in terms of a heavy Higgs-like boson.
 - For details of the analysis, see Max Bellomo's talk Thursday.
- Limits are set in the narrow width approximation, as well as for widths ranging from 5-15%.

