

1

Search for heavy fermionic top partners decaying to same-sign dileptons at 13 TeV

Clint Richardson for the CMS Collaboration

Introduction/Motivation

- * Characteristics
 - + Dominant background is often instrumental
 - Motivation for data-driven estimates (reduce reliance on detector simulation)
 - + High quality leptons are essential to exploiting the rarity of this channel

NB: In this talk lepton = electron, muon

* Same sign dilepton Standard Model processes

+ Eg: ttV, WZ, VVV, W+W+, tttt

Background Sources 2/3

- * Same sign dileptor
 - + Eg: ttV, WZ, V

* Charge MisID <</p>

NB: Muon charge misidentification rate significantly lower than electrons → neglect Occurs when charge of one lepton is mismeasured. Background contribution estimated using data-driven technique. Measure probability of mis-measuring electron charge (parametrized by pseudo-rapidity). Derive event weight based on above and apply to <u>opposite sign</u> dilepton events.

 $W_{\text{cmid}} = P_{\text{cmid}}(\eta_1) + P_{\text{cmid}}(\eta_2) - P_{\text{cmid}}(\eta_1) * P_{\text{cmid}}(\eta_2)$

Background Sources 3/3

+ Events with one or more fake leptons

NonPrompt Background

- Some part (often dominant) of events with two high quality ('tight') leptons come from events with one or more 'fake' leptons
- Relative sizes of contributions depend on:
 - + Prompt Rate
 - Rate at which prompt leptons pass tight ID
 - + Fake Rate
 - Rate at which fake leptons pass tight ID

Measured in suitable control regions and used to make prediction for this background

- Veto if we find Z boson in the event
- Require large number of extra jets & leptons in the event (≥ 5 for results, ≥ 2 for plots)
- ◇ Optimize H_T^{lep} (scalar sum of p_T of leptons and jets) for sensitivity → H_T^{lep} ≥ 900 GeV

120 GeV

N_{Events}

Di/Tri-Boson

- No significant excess seen
 - Observed (Expecter) ² imits of 950/910 (860/820)
 GeV for right/left blanded X_{5/3}
 0 500 1000 1500 2000 2500 3000

N_{Events} / 120 GeV

10

10-

- Surpassing the 8 TeV result (800 GeV) with only
 2.2 /fb
 - And looking forward to more data this year!
- + More information in B2G–15–006:

High H_T^{lep} Event

BACKUP

X_{5/3} Signal Topology

Background Systematics

- NonPrompt: 50%
- * ChargeMisID: 30%
- * Same-sign dilepton Standard Model processes
 - + Theory: ~10-50%
 - + Jet Energy Scale (JES): 3-6%
 - + Jet Energy Resolution: 2%
 - + Pileup: 6%
 - + Lepton triggering and reconstruction: 1-3%
 - + Luminosity: 4.6%

WWZ 4% 50% WZZ 6% 50% ZZZ 6% 50%	4% 50% 6% 50% 6% 50%
WZZ 6% 50% ZZZ 6% 50%	6% 50% 6% 50%
ZZZ 6% 50%	6% 50%
tttt 6% 50%	6% 50%

Background Process

ttW

ttΖ

ttH

WZ

ZZ

Source	Value	Application
Electron ID	1%	per electron
Electron ISO	1%	per electron
Electron Trigger	3%	per event
Muon ID	1%	per muon
Muon ISO	1%	per muon
Muon Trigger	3%	per event
Electron-Muon Trigger	3%	per event

Theory

20%

12%

14%

12%

12%

12

JES

4%

3%

8%

5%

4%

- NonPrompt background
 - Instrumental/Fake: Use Tight-Loose Method which utilizes lepton 'Prompt' and 'Fake' rate
 - Relates number of events with one or more leptons which pass a loose selection (but fail a tighter selection) to number of events with one or more fake leptons in signal region
- Prompt Rate:
 - Rate at which real, prompt, loosely selected leptons pass tighter selection requirements (those used in analysis to select leptons)
 - Measured in data using Z peak

Lepton Flavor	Prompt Rate
Electrons	0.873 +/- 0.001
Muons	0.940 +/- 0.001

Fake Rate

- Fake Rate measured using control sample collected with single lepton triggers
- * Goals for control sample:
 - + Enrich in QCD like events:
 - Allow only one lepton per event
 - Require the presence of a jet which is back-to-back with lepton
 - Remove events which have W-boson or Z-boson in them

Lepton Flavor	Fake Rate
Electrons	0.298 +/- 0.003
Muons	0.371 +/- 0.002

 Veto any event where one lepton in samesign pair forms a Zboson with lepton outside of the pair

Veto events where leptons have low invariant mass, or reconstruct to Zboson

 More final state objects in general

VS.

Tight-Loose Method

$$N_{t00} = (1 - p_1)(1 - p_2)L_{pp} + (1 - p_1)(1 - f_2)L_{pf} + (1 - f_1)(1 - p_2)L_{fp} + (1 - f_1)(1 - f_2)L_{ff}$$

$$N_{t10} = p_1(1 - p_2)L_{pp} + p_1(1 - f_2)L_{pf} + f_1(1 - p_2)L_{fp} + f_1(1 - f_2)L_{ff}$$

$$N_{t01} = (1 - p_1)p_2L_{pp} + (1 - p_1)f_2L_{pf} + (1 - f_1)p_2L_{fp} + (1 - f_1)f_2L_{ff}$$

$$N_{t11} = p_1 p_2 L_{pp} + p_1 f_2 L_{pf} + f_1 p_2 L_{fp} + f_1 f_2 L_{ff}$$

These equations can be solved for the numbers of events with prompt and non-prompt leptons:

$$L_{pf} = D(-f_1p_2N_{t00} + (1 - f_1)p_2N_{t10} + f_1(1 - p_2)N_{t01} - (1 - f_1)(1 - p_2)N_{t11})$$

$$L_{fp} = D(-p_1f_2N_{t00} + (1 - p_1)f_2N_{t10} + p_1(1 - f_2)N_{t01} - (1 - p_1)(1 - f_2)N_{t11})$$

$$L_{ff} = D(p_1p_2N_{t00} - (1 - p_1)p_2N_{t10} - p_1(1 - p_2)N_{t01} + (1 - p_1)(1 - p_2)N_{t11}).$$

$$N_{pf} = p_1 f_2 L_{pf}, N_{fp} = f_1 p_2 L_{fp} \text{ and } N_{ff} = f_1 f_2 L_{ff}$$

NonPrompt Background

NTT

NPP

- Some part (often dominant) of events with two high quality ('tight') leptons come from events with one or more 'fake' leptons
- Relative sizes of contributions depend on:
 - + Prompt Rate
 - Rate at which prompt leptons pass tight ID
 - + Fake Rate
 - Rate at which fake leptons
 pass tight ID

