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Recently, the LHC has found several anomalies in exclusive semileptonic b → s`+`− decays.
In this proceeding, we summarize the most important results of our global analysis of the
relevant decay modes. After a discussion of the hadronic uncertainties entering the theoretical
predictions, we present an interpretation of the data in terms of generic new physics scenarios.
To this end, we have performed model-independent fits of the corresponding Wilson coefficients
to the data and have found that in certain scenarios the best fit point is prefererred over
the Standard Model by a global significance of more than 4σ. Based on the results, the
discrimination between high-scale new physics and low-energy QCD effects as well as the
possibility of lepton-flavour universality violation are discussed.

1 Introduction

The flavour-changing neutral current (FCNC) transition b → s`+`− can be probed through
various decay channels, currently studied in detail at the LHCb, CMS and ATLAS experiments.
Recent experimental results have shown interesting deviations from the SM: The LHCb analysis1

of the 3 fb−1 data on B → K∗µ+µ− in particular confirms a ∼ 3σ anomaly in two large-recoil
bins of the angular observable P ′5

2,3 that was already present in the 1 fb−1 results presented in
2013 4. The observable RK = Br(B → Kµ+µ−)/Br(B → Ke+e−) was measured by LHCb 5

in the dilepton mass range from 1 to 6 GeV2 as 0.745+0.090
−0.074 ± 0.036, corresponding to a 2.6σ

tension with its SM value predicted to be equal to 1 (to a very good accuracy). Finally, also
the LHCb results 6 on the branching ratio of Bs → φµ+µ− exhibit devitions at the ∼ 3σ level
in two large-recoil bins.
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Figure 1 – Effective couplings C(′)
7,9,10 contributing to b→ s`+`− transitions and sensitivity of the various radiative

and (semi-)leptonic B(s) decays to them.

The appearance of several tensions in different b→ s`+`− channels is quite intriguing because
all these observables are sensitive to the same effective couplings C(′)

7,9,10 illustrated in Fig. 1 and
induced by the operators

O(′)
9 =

α

4π
[s̄γµPL(R)b][µ̄γµµ], O(′)

10 =
α

4π
[s̄γµPL(R)b][µ̄γµγ5µ],

O(′)
7 =

α

4π
mb[s̄σµνPR(L)b]F

µν , (1)

where PL,R = (1∓ γ5)/2 and mb denotes the b quark mass. It is thus natural to ask whether a
new physics contribution to these couplings could simultaneously account for the various tensions
in the data. Beyond the SM, contributions to C(′)

9,10 are for instance generated at tree level in
scenarios with Z ′ bosons or lepto–quarks. Note that additional scalar or pseudoscalar couplings
CS,S′,P,P ′ cannot address the above-mentioned anomalies since their contributions are suppressed
by small lepton masses. Therefore we will not discuss this possibility in the following.

The parameter space spanned by the couplings C(′)
7,9,10 is probed through various observables

in radiative and (semi-)leptonic B(s) decays, each of them sensitive to a different subset of co-
efficients (see Fig. 1). A complete investigation of potential new physics effects thus requires
a combined study of these observables including correlations among them. The first analysis
in this spirit, performed in Ref. 7 with the data of 2013, pointed to a large negative contribu-
tion to the Wilson coefficient C9. This general picture was confirmed later on by other groups,
using different/additional observables, different theoretical input for the form factors etc. (e.g.
Refs. 8,9). In this proceeding, we report the most important results of our analysis in Ref. 10

which can be compared to other recent global analyses 11,12,13 and which improves the origi-
nal study in Ref. 7 in many aspects: It includes the latest experimental results of all relevant
channels, uses refined techniques to estimate uncertainties originating from power corrections to
the hadronic form factors and from non-perturbative charm loops, and consistently takes into
account experimental and theoretical correlations.

Before presenting the results from our fits in Sec. 3, with a special emphasis on the possibility
of discriminating between high-scale new physics and low-energy QCD effects as well as on the
possibility of lepton-flavour universality violation, we discuss in Sec. 2 the hadronic uncertainties
entering the theoretical predictions of the relevant observables. Our conclusions are given in
Sec. 4.

2 Hadronic uncertainties

Predictions for exclusive semileptonic B decays are plagued by QCD effects of perturbative and
non-perturbative nature. At leading order (LO) in the effective theory, predictions involve tree-
level diagrams with insertions of the operators O7,9,10 (generated at one loop in the SM), as well
as one-loop diagrams with an insertion of the charged-current operator O2 = [s̄γµPLc][c̄γµPLb]
(generated at tree level in the SM). In contributions of the first type, the leptonic and the
hadronic current factorize, and QCD corrections are constrained to the hadronic B →M current
(first two diagrams in Fig. 2). This class of factorizable QCD corrections thus forms part of the



Figure 2 – Illustration of factorizable (first two diagrams) and non-factorizable (third diagram) QCD corrections
to exclusive B →M`+`− matrix elements.

hadronic form factors parametrizing the B →M transistion. Contributions of the second type,
on the other hand, receive non-factorizable QCD corrections (third diagram in Fig. 2) that
cannot be absorbed into form factors. In the following we discuss the uncertainties stemming
from the two types of corrections and their implementation in our analysis.

2.1 Form factor uncertainties

The form factors are available from lattice as well as from light-cone sum rule (LCSR) calcula-
tions, with the former being suited for the region of high q2 > 15 GeV2 and the latter for the
region of low q2 < 8 GeV2. Since the form factors introduce a dominant source of uncertainties
into the theory predictions, it is desirable to reduce the sensitivity to them as much as possible.
For B → V `+`− decays, with V being a vector meson, this can be achieved in the low-q2 region
by exploiting large-recoil symmetries of QCD. At LO in αs and Λ/mb, these symmetries enforce
certain relations among the seven hadronic form factors V , A1, A2, A0, T1, T2, T3, like e.g.

mB(mB +mK∗)A1 − 2E(mB −mK∗)A2

m2
BT2 − 2EmBT3

= 1 +O(αs,Λ/mb), (2)

where mB denotes the mass of the B meson, and mK∗ and E the mass and the energy of the K∗

meson. From the experimentally measured coefficients of the differential angular distribution
of B → V `+`−, one can construct observables that involve ratios like the one in eq. (2). The
resulting observables P (′)

i then only exhibit a mild form factor dependence, suppressed by powers
of αs and Λ/mb.

For the cancellation of the form factor uncertainties in ratios like the one in eq. (2), it is
crucial to have contral of the correlations among the errors of the different form factors. These
correlations can be taken into account via two orthogonal approaches: Either they can be as-
sessed directly from the LCSR calculation (Ref. 14 provides LCSR form factors with correlation
matrices), or they can be implemented resorting to the large-recoil symmetry relations. Whereas
the former method is limited to the particular set of LCSR form factors from Ref. 14 and hence
sensitive to details of the corresponding calculation, the latter method determines the correla-
tions in a model-independent way from first principles and can thus also be applied to different
sets of form factors like the ones from Ref. 15. As a drawback, correlations are obtained from
large-recoil symmetries only up to Λ/mb corrections which have to be estimated. For the esti-
mate of these factorizable power corrections, we follow the strategy developed in Ref. 16, which
is based on and further refines a method first proposed in Ref. 17.

2.2 Uncertainties from cc̄ loops

Long-distance charm-loop effects (third diagram in Fig. 2) can mimick the effect of an effective
coupling Ccc̄9 . Due to the non-local structure of these corrections, their contribution is expected
to have a non-constant q2-dependence, where q2 is the squared invariant masses of the lepton



Coefficient Best fit 1σ 3σ PullSM

CNP
7 −0.02 [−0.04,−0.00] [−0.07, 0.03] 1.2

CNP
9 −1.09 [−1.29,−0.87] [−1.67,−0.39] 4.5

CNP
10 0.56 [0.32, 0.81] [−0.12, 1.36] 2.5

CNP
7′ 0.02 [−0.01, 0.04] [−0.06, 0.09] 0.6

CNP
9′ 0.46 [0.18, 0.74] [−0.36, 1.31] 1.7

CNP
10′ −0.25 [−0.44,−0.06] [−0.82, 0.31] 1.3

CNP
9 = CNP

10 −0.22 [−0.40,−0.02] [−0.74, 0.50] 1.1

CNP
9 = −CNP

10 −0.68 [−0.85,−0.50] [−1.22,−0.18] 4.2

CNP
9 = −CNP

9′ −1.06 [−1.25,−0.85] [−1.60,−0.40] 4.8

Table 1: Results of various one-parameter fits for the Wilson coefficients {Ci}.

pair. Together with the perturbative SM contribution Ceff
9 SM pert and a potential constant NP

coupling CSM
9 , it can be cast into an effective Wilson coefficient

Ceff i
9 (q2) = Ceff

9 SM pert.(q
2) + CNP

9 + Ccc̄ i9 (q2), (3)

with a different Ccc̄ i9 and hence also a different Ceff i
9 for the three transversity amplitudes i =

0, ‖,⊥. Currently, only a partial calculation 15 exists, yielding values Ccc̄ i9 KMPW that tend to
enhance the anomalies. In our analysis, we assume that this partial result is representative for
the order of magnitude of the total charm-loop contribution and we assign an error to unknown
charm-loop effects varying

Ccc̄ i9 (q2) = si Ccc̄ i9 KMPW(q2), for − 1 ≤ si ≤ 1. (4)

3 Results of the global fit

Our reference fits are obtained using the following experimental input: branching ratios and
angular observables of the decays B → K∗µ+µ− and Bs → φµ+µ−, branching ratios of the
charged and neutral modes B → Kµ+µ−, the branching ratios of B → Xsµ

+µ−, Bs → µ+µ−

and B → Xsγ, as well as the isospin asymmetry AI and the time-dependent CP asymmetry
SK∗γ of B → K∗γ. For the theoretical predictions, we use lattice form factors from Refs. 18,19

in the low-recoil region, and LCSR form factors from Ref. 15 (except for Bs → φ where Ref. 14 is
used), with correlations assessed from the large-recoil symmetries.

Starting from a model hypothesis with n free parameters for the Wilson coefficients {CNP
i },

we then perform a frequentist ∆χ2-fit, including experimental and theoretical correlation ma-
trices. In Tab. 1 we show our results for various one-parameter scenarios. In the last column
we give the SM-pull for each scenario, i.e. we quantify by how many sigma the best fit point is
preferred over the SM point {CNP

i } = 0 in the given scenario. A scenario with a large SM-pull
thus allows for a big improvement over the SM and a better description of the data. From
the results in Tab. 1 we infer that a large negative CNP

9 is required to explain the data, with
CNP

9 ∼ −1.1 in the scenario where only this coefficient is generated. A decomposition into the
different exclusive decay channels, as well as into low- and large-recoil regions, shows that each
of these individual contributions points to the same solution, i.e. a negative CNP

9 , albeit with
varying significance. We refer the reader to Ref. 10 for further results, e.g. for fits in various
2-parameter scenarios as well as for the full 6-parameter fit of C(′)NP

7,9,10 resulting in a SM-pull of
3.6σ.
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Figure 3 – Left: Bin-by-bin fit of the one-parameter scenario with a single coefficient CNP
9 . Right: Fit with

indpendent coefficients CNP
9 µ and CNP

9 e .

3.1 New physics vs. non-perturbative charm-contribution

According to Eq. (3), a potential NP contribution CNP
9 enters amplitudes always together with a

charm-loop contribution Ccc̄ i9 (q2), spoiling an unambiguous interpretation of the fit result from
the previous section in terms of new physics. However, whereas CNP

9 does not depend on the
squared invariant mass q2 of the lepton pair, Ccc̄ i9 (q2) is expected to exhibit a non-trivial q2-
dependence. Following Ref.12, we show in Fig. 3 on the left a bin-by-bin fit for the one-parameter
scenario with a single coefficient CNP

9 . The results obtained in the individual bins are consistent
with each other, allowing thus for a solution CNP

9 that is constant in the whole q2 region, as
required for an interpretation in terms of new physics, though the situation is not conclusive
due to the large uncertainties in the single bins.

An alternative strategy to address this question, consists in a direct fit of the q2-dependent
charm contribution Ccc̄ i9 (q2), as performed in Ref. 20 using a parametrization which introduces
18 free parameters. Given the large number of free parameters, it is neither surprising that a
good fit to the data can be achieved in this way, nor that one of the 12 parameters encoding
a non-trivial q2-dependence fluctuates from zero by & 2σ. Therefore, the results obtained in
Ref. 20 do not disfavour a q2-independent NP solution CNP

9 . A solid interpretation of the results
in Ref. 20 would require a comparison of the goodness of the 18-parameter fit for Ccc̄ i9 (q2) with
the 1-parameter fit for CNP

9 , taking into account the different number of degrees of freedom, a
task that has not been undertaken in Ref. 20.

3.2 Lepton-flavour universality violation

Since the measurement of RK suggests the violation of lepton-flavour universality, we also stud-
ied the situation where the muon- and the electron-components of the operators C(′)

9,10 receive
independent new physics contributions CNP

i µ and CNP
i e , respectively. The electron-couplings CNP

i e

are constrained by adding the decays B → K(∗)e+e− to the global fit. Note that the correlated
fit to B → Kµ+µ− and B → Ke+e− simultaneously is equivalent to a direct inclusion of the
observable RK .

In Fig. 3 on the right we display the result for the two-parameter fit to the coefficients CNP
9 µ

and CNP
9 e . The fit prefers an electron-phobic scenario with new physics coupling to µ+µ− but not

to e+e−. Under this hypothesis, that should be tested by measuring RK∗ and Rφ, the SM-pull
increases by ∼ 0.5σ compared to the value in Tab. 1 for the lepton-flavour universal scenario.



4 Conclusions

LHCb data on b→ s`+`− decays shows several tensions with SM predictions, in particular in the
angular observable P ′5 of B → K∗µ+µ−, in the branching ratio of Bs → φµ+µ−, and in the ratio
RK = Br(B → Kµ+µ−)/Br(B → Ke+e−) (all of them at the ∼ 3σ level). In global fits of the
Wilson coefficients to the data, scenarios with a large negative CNP

9 are preferred over the SM
by typically more than 4σ. A bin-by-bin analysis demonstrates that the fit is compatible with
a q2-indepedent effect generated by high-scale new physics, though a q2-dependent QCD effect
cannot be excluded with current precision. Note, however, that a QCD effect could not explain
the tension in RK . The latter observable further favours a lepton-flavour violating scenario with
new physics coupling only to µ+µ− but not to e+e−, a scenario to be probed by a measurement
of the analogous ratios RK∗ and Rφ to probe this hypothesis.
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17. S. Jäger and J. Martin Camalich, JHEP 1305 (2013) 043, arXiv:1212.2263 [hep-ph].
18. R. R. Horgan, Z. Liu, S. Meinel and M. Wingate, Phys. Rev. D 89 (2014) 9, 094501,

arXiv:1310.3722 [hep-lat], PoS LATTICE 2014 (2015) 372, arXiv:1501.00367 [hep-lat].



19. C. Bouchard et al. [HPQCD Collaboration], Phys. Rev. D 88 (2013) 5, 054509 [Phys. Rev.
D 88 (2013) 7, 079901], arXiv:1306.2384 [hep-lat].

20. M. Ciuchini et al. , arXiv:1512.07157 [hep-ph].


	Introduction
	Hadronic uncertainties
	Form factor uncertainties
	Uncertainties from c loops

	Results of the global fit
	New physics vs. non-perturbative charm-contribution
	Lepton-flavour universality violation

	Conclusions

