Global analysis of $b \rightarrow s \mu^+ \mu^-$ anomalies

Lars Hofer

in collaboration with S. Descotes-Genon, J. Matias, J. Virto arXiv:1510.04239

Moriond EW, March 2016

うしん 山田 ・山田・山田・山田・

New physics in $b \to s\ell\ell$

Sac

 $B
ightarrow K^* \mu^+ \mu^-$

4-body decay $\bar{B}_d \to \bar{K}^{*0} (\to K^- \pi^+) l^+ l^-$ with on-shell K^{*0}

$$\frac{d^4 \Gamma(\bar{B}_d)}{dq^2 \, d \cos \theta_\ell \, d \cos \theta_K \, d\phi} = \frac{9}{32\pi} \sum_i J_i(q^2) f_i(\theta_\ell, \theta_K, \phi)$$

invariant mass of lepton-pair q^2

angles $\theta_{\ell}, \theta_K, \phi$

- observables $S_i, P_i^{(\prime)}$ as ratios of J_i
- most interesting region: small $q^2 \lesssim 8 \,\mathrm{GeV}$

Non-perturbative QCD

1 Form factors: $V, A_0, A_1, A_2, T_1, T_2, T_3$

- ► large-recoil relations at LO, e.g. $\frac{m_B(m_B + m_{K^*})A_1 - 2E(m_B - m_{K^*})A_2}{m_B^2 T_2 - 2Em_B T_3} = 1 + \mathcal{O}(\alpha_s, \Lambda/m_b)$
- ► construct observables involving such ratios → form factors cancel at LO \Rightarrow clean observables $P_i^{(l)}$

うして 山田 マイボット ボット シックション

correlations crucial for cancellations of FF errors

Non-perturbative QCD

1 Form factors: $V, A_0, A_1, A_2, T_1, T_2, T_3$

Two complementary methods to include correlations

- take correlation from particular LCSR calculation [Altmannshofer,Straub + Bharucha,Straub,Zwicky]
- large-recoil relations
 - + QCDF corrections of $\mathcal{O}(\alpha_s)$
 - + estimate of power corrections of $\mathcal{O}(\Lambda/m_B)$

[Descotes-Genon,LH,Matias,Virto]

results in good agreement!

Non-perturbative QCD

2 Long-distance charm loop effects $C_9^{c\bar{c}}(q^2)$ at large recoil:

$$\mathcal{C}_9^{\text{eff}}(q^2) = \mathcal{C}_{9\text{ SMpert.}}^{\text{eff}}(q^2) + \mathcal{C}_9^{\text{NP}} + \mathcal{C}_9^{c\bar{c}}(q^2)$$

► partial computation using LCSR: KMPW[Khodjamirian et al.] → yields $C_{9 \text{ KMPW}}^{c\bar{c}i} > 0$ (enhances anomalies)

we take

 $C_9^{c\bar{c}\,i}(q^2) = s_i \, C_{9 \text{ KMPW}}^{c\bar{c}\,i}(q^2), \quad s_i = 0 \pm 1, \quad \text{for} \quad i = 0, \|, \perp$

うして 山田 マイボット ボット シックション

The $B ightarrow K^* \mu^+ \mu^-$ anomaly

2013: evaluation of 1 fb^{-1} data

 3.7σ tension in [4, 8.3] GeV² bin of observable P'_5

2015: evaluation of 3 fb^{-1} data:

tension in P'_5 confirmed

うして 山田 マイボット ボット シックション

$B ightarrow K \mu^+ \mu^-$ and R_K

 $B^+ \to K^+ \mu^+ \mu^-$

$10^7 \times BR$	Theory (SM)	Experiment	Pull
$ \begin{bmatrix} 0.1, 0.98 \\ [1.1, 2] \\ [2, 3] \\ [3, 4] \\ [4, 5] \\ [5, 6] \\ [6, 7] \end{bmatrix} $	$\begin{array}{c} 0.31 \pm 0.09 \\ 0.32 \pm 0.10 \\ 0.35 \pm 0.11 \\ 0.35 \pm 0.11 \\ 0.35 \pm 0.11 \\ 0.34 \pm 0.12 \\ 0.34 \pm 0.12 \end{array}$	$\begin{array}{c} 0.29 \pm 0.02 \\ 0.21 \pm 0.02 \\ 0.28 \pm 0.02 \\ 0.25 \pm 0.02 \\ 0.22 \pm 0.02 \\ 0.23 \pm 0.02 \\ 0.25 \pm 0.02 \end{array}$	+0.2 +1.1 +0.6 +0.8 +1.1 +0.9 +0.8
[7, 8]	0.34 ± 0.13	0.23 ± 0.02	+0.8

$B^0 \to K^0 \mu^+ \mu^-$			
$10^7 \times BR$	Theory (SM)	Experiment	Pull
[0.1, 2]	0.62 ± 0.19 0.65 ± 0.21	0.23 ± 0.11 0.27 ± 0.11	+1.8
[4, 6]	0.64 ± 0.22 0.64 ± 0.22	0.37 ± 0.11 0.35 ± 0.10 0.54 ± 0.12	+1.2 +1.2
[0, 8]	0.03 ± 0.23	0.34 ± 0.12	+0.4

- Agreement between theory and experiment at $\sim 1 \sigma$
- but: experiment systematically lower than theory prediction for all available FF parametrizations:
 - LCSR FFs from KMPW[Khodjamirian et al.] and BZ[Ball,Zwicky]
 - lattice QCD[Bouchard et al.]

$B ightarrow K \mu^+ \mu^-$ and R_K

 $B^+ \to K^+ \mu^+ \mu^-$

$10^7 \times BR$	Theory (SM)	Experiment	Pull
	$\begin{array}{c} 0.31 \pm 0.09 \\ 0.32 \pm 0.10 \\ 0.35 \pm 0.11 \\ 0.35 \pm 0.11 \\ 0.35 \pm 0.11 \\ 0.34 \pm 0.12 \\ 0.34 \pm 0.12 \end{array}$	$\begin{array}{c} 0.29 \pm 0.02 \\ 0.21 \pm 0.02 \\ 0.28 \pm 0.02 \\ 0.25 \pm 0.02 \\ 0.22 \pm 0.02 \\ 0.23 \pm 0.02 \\ 0.23 \pm 0.02 \\ 0.25 \pm 0.02 \end{array}$	+0.2 +1.1 +0.6 +0.8 +1.1 +0.9 +0.8
[7, 8]	0.34 ± 0.13	0.23 ± 0.02	+0.8

$B^0 \to K^0 \mu^+ \mu^-$			
$10^7 \times BR$	Theory (SM)	Experiment	Pull
[0.1, 2]	0.62 ± 0.19	0.23 ± 0.11	+1.8
[2, 4] [4, 6]	0.65 ± 0.21 0.64 ± 0.22	0.37 ± 0.11 0.35 ± 0.10	$^{+1.2}_{+1.2}$
[6, 8]	0.63 ± 0.23	0.54 ± 0.12	+0.4

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Agreement between theory and experiment at $\sim 1 \sigma$
- but: experiment systematically lower than theory prediction for all available FF parametrizations:
 - LCSR FFs from KMPW[Khodjamirian et al.] and BZ[Ball,Zwicky]
 - lattice QCD[Bouchard et al.]
- ► $R(K) = Br(B \to K\mu^+\mu^-)/Br(B \to Ke^+e^-) \stackrel{\text{exp.}}{=} 0.75^{+0.09}_{-0.07} \pm 0.04$ 2.6 sigma deviation from clean SM prediction R(K) = 1

 $B_s \rightarrow \phi \mu^+ \mu^-$

$B_s \to \phi \mu^+ \mu^-$			
$10^7 \times BR$	Theory (SM)	Experiment	Pull
[0.1, 2.]	1.81 ± 0.36	1.11 ± 0.16	+1.8
[2., 5.]	1.88 ± 0.32	0.77 ± 0.14	+3.2
[5., 8.]	2.25 ± 0.41	0.96 ± 0.15	+2.9
[15, 18.8]	2.20 ± 0.17	1.62 ± 0.20	+2.2

- Tension between theory and experiment at $\sim 3 \sigma$
- but: strong dependence on hadronic form factors (LCSR FFs from BSZ[Bharucha,Straub,Zwicky])
- ► better: study clean observables → not enough statistics yet ...
- ► BR(B_s → φµ⁺µ⁻) not conclusive as single observable, but as ingredient of global analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

- statistical fluctuation of data
 - \rightarrow perform consistence checks [Matias,Serra]

- statistical fluctuation of data
 - \rightarrow perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
 - P'_i observables are not very sensitive to FFs but: power corrections/correlations?

うして 山田 マイボット ボット シックション

- cannot explain tension in R_K

- statistical fluctuation of data
 - \rightarrow perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
 - P'_i observables are not very sensitive to FFs but: power corrections/correlations?

うして 山田 マイボット ボット シックション

- cannot explain tension in R_K
- effect from charm resonances [Lyon,Zwicky]
 - + could affect the anomalous bins of P'_5
 - cannot explain tension in R_K

- statistical fluctuation of data
 - \rightarrow perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
 - $-P'_i$ observables are not very sensitive to FFs but: power corrections/correlations?
 - cannot explain tension in R_K
- effect from charm resonances [Lyon,Zwicky]
 - + could affect the anomalous bins of P'_5
 - cannot explain tension in R_K
- new physics (Z'-models, lepto-quarks)
 + can explain tension in R_K if coupled only to muons

Global Fit: Framework

Form factor input:

- ► large recoil: LCSR form factors mainly from KMPW
- ► low recoil: lattice form factors from [Horgan et al.; Bouchard et al.]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Global Fit: Framework

Form factor input:

- ► large recoil: LCSR form factors mainly from KMPW
- ► low recoil: lattice form factors from [Horgan et al.; Bouchard et al.]

Observables:

- ► $B_{(s)} \rightarrow (K^*, \phi)\mu^+\mu^-$: BRs + angular observables
- ▶ $B \rightarrow K\mu^+\mu^-$: BRs charged + neutral mode
- $B \to X_s \gamma, B \to K^* \gamma$ (A_I and $S_{K^* \gamma}$), $B \to X_s \mu^+ \mu^-, B_s \to \mu^+ \mu^-$

Global Fit: Framework

Form factor input:

- large recoil: LCSR form factors mainly from KMPW
- ► low recoil: lattice form factors from [Horgan et al.; Bouchard et al.]

Observables:

- ► $B_{(s)} \rightarrow (K^*, \phi)\mu^+\mu^-$: BRs + angular observables
- ▶ $B \rightarrow K\mu^+\mu^-$: BRs charged + neutral mode
- $B \to X_s \gamma, B \to K^* \gamma$ (A_I and $S_{K^* \gamma}$), $B \to X_s \mu^+ \mu^-, B_s \to \mu^+ \mu^-$

Frequentist $\Delta \chi^2$ -fit:

- model hypothesis for $\{C_i\}$ with *n* degrees of freedom
- Experimental and theoretical correlation matrix included (theory uncertainties treated as Gaussian)
- ► SM-pull (= by how many σ is $\{C_i^{SM}\}$ disfavoured compared to $\{C_i^{fit}\}$ under the model hypothesis)

1D scenarios

Coefficient	Best fit	1σ	3σ	$\text{Pull}_{\rm SM}$
$\mathcal{C}_7^{\mathrm{NP}}$	-0.02	[-0.04, -0.00]	[-0.07, 0.03]	1.2
${\cal C}_9^{ m NP}$	-1.09	[-1.29, -0.87]	[-1.67, -0.39]	4.5
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.56	[0.32, 0.81]	[-0.12, 1.36]	2.5
$\mathcal{C}^{\mathrm{NP}}_{7'}$	0.02	[-0.01, 0.04]	[-0.06, 0.09]	0.6
$\mathcal{C}_{9'}^{\mathrm{NP}}$	0.46	[0.18, 0.74]	[-0.36, 1.31]	1.7
$\mathcal{C}^{\mathrm{NP}}_{10'}$	-0.25	[-0.44, -0.06]	[-0.82, 0.31]	1.3
$\mathcal{C}_9^{\mathrm{NP}} = \mathcal{C}_{10}^{\mathrm{NP}}$	-0.22	[-0.40, -0.02]	[-0.74, 0.50]	1.1
$\mathcal{C}_9^{ ext{NP}} = -\mathcal{C}_{10}^{ ext{NP}}$	-0.68	$\left[-0.85, -0.50 ight]$	[-1.22, -0.18]	4.2
${\cal C}_9^{ m NP}=-{\cal C}_{9'}^{ m NP}$	-1.06	[-1.25, -0.85]	[-1.60, -0.40]	4.8

Large negative NP-contribution to C_9 needed!

Channel decomposition

Fit	$\mathcal{C}_{9 \; \mathrm{Bestfit}}^{\mathrm{NP}}$	1σ	$\text{Pull}_{\rm SM}$
$All \ b \to s \mu \mu$	-1.09	[-1.29, -0.87]	4.5
All $b \rightarrow s \mu \mu$ excluding [6,8] region	-0.99	[-1.23, -0.75]	3.8
Only $B \to K \mu \mu$	-0.85	[-1.67, -0.20]	1.4
Only $B \to K^* \mu \mu$	-1.05	[-1.27, -0.80]	3.7
Only $B_s \to \phi \mu \mu$	-1.98	[-2.84, -1.29]	3.5
Only $b ightarrow s \mu \mu$ at large recoil	-1.30	[-1.57, -1.02]	4.0
Only $b ightarrow s \mu \mu$ at low recoil	-0.93	[-1.23, -0.61]	2.8

 different decay channels and q²-regions point to the same NP solution

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• overlap of 1σ fit regions at $C_9^{\rm NP} \sim -1.1$

What about other Wilson coefficients?

Complete 6D fit

Coefficient	1σ	2σ	3σ
$\mathcal{C}_7^{\mathrm{NP}}$	[-0.02, 0.03]	[-0.04, 0.04]	[-0.05, 0.08]
$\mathcal{C}_9^{\mathrm{NP}}$	[-1.4, -1.0]	[-1.7, -0.7]	[-2.2, -0.4]
$\mathcal{C}_{10}^{\mathrm{NP}}$	[-0.0, 0.9]	[-0.3, 1.3]	[-0.5, 2.0]
$\mathcal{C}^{\mathrm{NP}}_{7'}$	[-0.02, 0.03]	[-0.04, 0.06]	[-0.06, 0.07]
$\mathcal{C}^{\mathrm{NP}}_{9'}$	[0.3, 1.8]	[-0.5, 2.7]	[-1.3, 3.7]
$\mathcal{C}^{\mathrm{NP}}_{10'}$	[-0.3, 0.9]	[-0.7, 1.3]	[-1.0, 1.6]

- C_9 consistent with SM only above 3σ
- All other Wilson coefficients consistent with SM (C'_9 at 2σ)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• total SM-pull of 6D-fit: 3.6σ

New Physics vs. Charm

$$\mathcal{C}_9^{\text{eff}}(q^2) \,=\, \mathcal{C}_{9\,\text{SMpert.}}^{\text{eff}}(q^2) \,+\, \mathcal{C}_9^{\text{NP}} \,+\, \mathcal{C}_9^{c\bar{c}}(q^2)$$

うして 山田 マイボット ボット シックション

► NP contribution C₉^{NP} enters always together with non-perturbative charm-contribution C₉^{cc̄}(q²)

► C_9^{NP} : q^2 -independent $C_9^{c\overline{c}}(q^2)$: pronounced q^2 -dependence expected

New Physics vs. Charm

$$\mathcal{C}_9^{\text{eff}}(q^2) \,=\, \mathcal{C}_{9 \text{ SMpert.}}^{\text{eff}}(q^2) \,+\, \mathcal{C}_9^{\text{NP}} \,+\, \mathcal{C}_9^{c\bar{c}}(q^2)$$

► NP contribution C₉^{NP} enters always together with non-perturbative charm-contribution C₉^{cc̄}(q²)

► C_9^{NP} : q^2 -independent $C_9^{c\overline{c}}(q^2)$: pronounced q^2 -dependence expected

► perform individual fits in different q²-regions

results compatible with q²-independent shift!

Lepton-flavour non-universality

- measurement of R_K suggests violation of LFU
- allow for independent contributions $C_{i\mu}^{NP}$ and C_{ie}^{NP} to operators
- ▶ add electron-channels $B \to K^{(*)}e^+e^-$ to the global fit

fit prefers NP coupling to $\mu^+\mu^-$ but not to e^+e^- (SM-pulls typically increase by ~ 0.5 σ under this hypothesis)

Sac

Conclusions

- ► several ~ 3σ anomalies in $b \to s\ell^+\ell^-$ data: $P'_5(B \to K^*\mu^+\mu^-), \quad Br(B_s \to \phi\mu^+\mu^-), \quad R_K$
- ► global fit gives $4 5\sigma$ preferences for scenarios with negative $C_9^{\rm NP} \sim -1.1$
- form factor uncertainties (factorizable power corrections) are under control
- alternative explanation via large charm-loop effects:
 - fit compatible with q^2 -independent effect
 - cannot explain R_K
- ► R_K favours LFU violation with NP coupling only to $\mu^+\mu^-$, not to $e^+e^- \Rightarrow$ search for $R_{K^*}, R_{\phi} < 1!$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Backup

Lepton-flavour non-universality

- assume NP in $C_{i \mu}^{NP}$, but no NP in $C_{i e}^{NP}$
- Predictions for R_K , R_{K^*} , R_{ϕ} for best-fit points:

	$R_K[1,6]$	$R_{K^*}[1.1, 6]$	$R_{\phi}[1.1, 6]$
SM	$\left 1.00 \pm 0.01 \right.$	1.00 ± 0.01	1.00 ± 0.01
$\mathcal{C}_9^{\rm NP} = -1.11$	$\left \begin{array}{c} 0.79 \pm 0.01 \end{array} \right.$	0.87 ± 0.08	0.84 ± 0.02
$C_9^{\rm NP} = -C_{10}^{\rm NP} = -0.69$	$\left \begin{array}{c} 0.67 \pm 0.01 \end{array} \right.$	0.71 ± 0.03	0.69 ± 0.01
$\mathcal{C}_9^{\rm NP} = -1.16, \mathcal{C}_{10}^{\rm NP} = 0.35$	0.71 ± 0.01	0.78 ± 0.07	0.76 ± 0.01

 \Rightarrow search for $R_{K^*}, R_{\phi} < 1!$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Comparison with Altmannshofer/Straub

	our analysis (DHMV)	Altmannsh./Straub (AS)
FF input	mainly KMPW	BSZ
FF correlations	from large-recoil symmetries + power corrections	from BSZ calculation
$B ightarrow K^* \mu^+ \mu^-$ observables	$P_i^{(\prime)}$ all bins	S_i bins within $[1, 6]$

Comparison with Altmannshofer/Straub

	our analysis (DHMV)	Altmannsh./Straub (AS)
FF input	mainly KMPW	BSZ
FF correlations	from large-recoil symmetries + power corrections	from BSZ calculation
$B \rightarrow K^* \mu^+ \mu^-$ observables	$P_i^{(\prime)}$ all bins	S_i bins within $[1, 6]$

AS: + exact assessment of correlations for BSZ form factors

 depends on model-assumptions of and is limited to this particular set of form factors

DHMV: + model-independent determination of dominant FF correlations

– correlations only up to symmetry breaking corrections of order $\mathcal{O}(\Lambda/m_b)$ which can only be estimated

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 \Rightarrow Analyses complement each other

Comparison with Altmannshofer/Straub

Results in reasonably good agreement!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Implementation of hadronic uncertainties

Form factors: Symmetry-breaking corrections:

$$F(q^{2}) = F^{\text{soft}}(q^{2}) + \Delta F^{\alpha_{s}}(q^{2}) + a_{F} + b_{F} \frac{q^{2}}{m_{B}^{2}}$$

► central values for a_F, b_F from fit to the full form factor F (taken from LCSR)

• conservative error estimate: assign ~ 100% errors to $a_F, b_F = \mathcal{O}(\Lambda/m_B) \times F$

Implementation of hadronic uncertainties

Form factors: Symmetry-breaking corrections:

$$F(q^2) = F^{\text{soft}}(q^2) + \Delta F^{\alpha_s}(q^2) + a_F + b_F \frac{q^2}{m_B^2}$$

► central values for a_F, b_F from fit to the full form factor F (taken from LCSR)

Conservative error estimate: assign ~ 100% errors to a_F, b_F = O(Λ/m_B) × F

Long-distance charm effects $C_9^{c\bar{c}}(q^2)$ at large recoil:

- ▶ partial computation using LCSR: KMPW[Khodjamirian et al.] → yields C^{cci}_{9 KMPW} > 0 (enhances anomalies)
- we take

 $\mathcal{C}_9^{c\bar{c}\,i}(q^2) \;=\; s_i \; \mathcal{C}_{9\;{\rm KMPW}}^{c\bar{c}\,i}(q^2), \qquad s_i = 0 \pm 1, \qquad {\rm for} \quad i = 0, \|, \bot$

Fit: Statistical Framework

 $\chi^2(\{C_i\}) = (\vec{O}_{\exp} - \vec{O}_{\mathrm{th}}(\{C_i\}))^T (\textbf{Cov}_{\exp} + \textbf{Cov}_{\mathrm{th}})^{-1} (\vec{O}_{\exp} - \vec{O}_{\mathrm{th}}(\{C_i\}))$

Frequentist $\Delta \chi^2$ -fit:

- model hypothesis for $\{C_i\}$ with n degrees of freedom
- Experimental correlation matrix Covexp
- ► Theoretical correlation matrix *Cov*_{th}:
 - ► assume $Cov_{th}(C_i) = Cov_{th}(C_i^{SM})$ \rightarrow check: repeat fit for $Cov_{th}(C_i) = Cov_{th}(C_i^{fit})$
 - treat all systematic uncertainties as Gaussian
- determine
 - best-fit point $\{C_i^{\text{fit}}\}$
 - confidence level regions
 - SM-pull (= by how many σ {C_iSM} is disfavoured compared to {C_i^{fit}} under the model hypothesis)