Global analysis of
 $b \rightarrow s \mu^{+} \mu^{-}$anomalies

Lars Hofer

+1III Universitat ${ }_{\text {de }}$ IIIt BARCELONA

in collaboration with
S. Descotes-Genon, J. Matias, J. Virto arXiv:1510.04239

Moriond EW, March 2016

New physics in $b \rightarrow$ sll

SM and NP particles induce an effective $b \bar{s} \mu^{+} \mu^{-}$coupling

$$
\begin{aligned}
\mathcal{O}_{9}^{(\prime)} & =\frac{\alpha}{4 \pi}\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\mu} \gamma_{\mu} \mu\right] \\
\mathcal{O}_{10}^{(\prime)} & =\frac{\alpha}{4 \pi}\left[\bar{s} \gamma^{\mu} P_{L(R)} b\right]\left[\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right]
\end{aligned}
$$

$$
\mathcal{O}_{7}^{(\prime)}=\frac{\alpha}{4 \pi} m_{b}\left[\bar{s} \sigma_{\mu \nu} P_{R(L)} b\right] F^{\mu \nu}
$$

+ scalar operators (not relevant for this talk)

processes	$\mathcal{C}_{7}^{(\prime)}$	$\mathcal{C}_{9}^{(\prime)}$	$\mathcal{C}_{10}^{(\prime)}$
$B \rightarrow X_{s} \gamma, B \rightarrow K^{*} \gamma$	\checkmark		
$B \rightarrow X_{s} \mu^{+} \mu^{-}$	\checkmark	\checkmark	\checkmark
$B_{s} \rightarrow \mu^{+} \mu^{-}$			\checkmark
$B \rightarrow K^{(*)} \mu^{+} \mu^{-}, B_{s} \rightarrow \phi \mu^{+} \mu^{-}$	\checkmark	\checkmark	\checkmark

$B \rightarrow \boldsymbol{K}^{*} \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

4-body decay $\bar{B}_{d} \rightarrow \bar{K}^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) l^{+} l^{-}$with on-shell $K^{* 0}$

$$
\frac{d^{4} \Gamma\left(\bar{B}_{d}\right)}{d q^{2} d \cos \theta_{\ell} d \cos \theta_{K} d \phi}=\frac{9}{32 \pi} \sum_{i} J_{i}\left(q^{2}\right) f_{i}\left(\theta_{\ell}, \theta_{K}, \phi\right)
$$

invariant mass of lepton-pair q^{2}
angles $\theta_{\ell}, \theta_{K}, \phi$

- observables $S_{i}, P_{i}^{(\prime)}$ as ratios of J_{i}
- most interesting region: small $q^{2} \lesssim 8 \mathrm{GeV}$

Non-perturbative QCD

11 Form factors: $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$

- large-recoil relations at LO, e.g.

$$
\frac{m_{B}\left(m_{B}+m_{K^{*}}\right) A_{1}-2 E\left(m_{B}-m_{K^{*}}\right) A_{2}}{m_{B}^{2} T_{2}-2 E m_{B} T_{3}}=1+\mathcal{O}\left(\alpha_{s}, \Lambda / m_{b}\right)
$$

- construct observables involving such ratios
\rightarrow form factors cancel at LO \Rightarrow clean observables $P_{i}^{(\prime)}$
- correlations crucial for cancellations of FF errors

Non-perturbative QCD

11 Form factors: $V, A_{0}, A_{1}, A_{2}, T_{1}, T_{2}, T_{3}$
Two complementary methods to include correlations

- take correlation from particular LCSR calculation
[Altmannshofer,Straub + Bharucha,Straub,Zwicky]
- large-recoil relations
+ QCDF corrections of $\mathcal{O}\left(\alpha_{s}\right)$
+ estimate of power corrections of $\mathcal{O}\left(\Lambda / m_{B}\right)$
[Descotes-Genon,LH,Matias,Virto]
results in good agreement!

Non-perturbative QCD

2 Long-distance charm loop effects $\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)$ at large recoil:

$$
\mathcal{C}_{9}^{\mathrm{eff}}\left(q^{2}\right)=\mathcal{C}_{9 \text { SMpert. }}^{\text {eff }}\left(q^{2}\right)+\mathcal{C}_{9}^{\text {NP }}+\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)
$$

- partial computation using LCSR: KMPW[Khodjamirian et al.] \rightarrow yields $\mathcal{C}_{9}^{c \bar{c} \text { KMPW }} i \quad>0$ (enhances anomalies)
- we take

$$
\mathcal{C}_{9}^{c \bar{c} i}\left(q^{2}\right)=s_{i} \mathcal{C}_{9}^{c \bar{c} \mathrm{KMPW}}\left(q^{2}\right), \quad s_{i}=0 \pm 1, \quad \text { for } \quad i=0, \|, \perp
$$

The $B \rightarrow K^{*} \mu^{+} \mu^{-}$anomaly

2013: evaluation of $1 \mathrm{fb}^{-1}$ data 3.7σ tension in $[4,8.3] \mathrm{GeV}^{2}$ bin of observable P_{5}^{\prime}

2015: evaluation of $3 \mathrm{fb}^{-1}$ data:

2.8σ in $[4,6] \mathrm{GeV}^{2}$ 3.0σ in $[6,8] \mathrm{GeV}^{2}$
tension in P_{5}^{\prime} confirmed

$B \rightarrow \boldsymbol{K} \mu^{+} \boldsymbol{\mu}^{-}$and \boldsymbol{R}_{K}

$B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}$							
$10^{7} \times B R$	Theory (SM)	Experiment	Pull		$B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$	Pull	
$[0.1,0.98]$	0.31 ± 0.09	0.29 ± 0.02	+0.2		$10^{7} \times B R$	Theory (SM)	Experiment
$[1.1,2]$	0.32 ± 0.10	0.21 ± 0.02	+1.1				
$[2,3]$	0.35 ± 0.11	0.28 ± 0.02	+0.6	$[0.1,2]$	0.62 ± 0.19	0.23 ± 0.11	+1.8
$[3,4]$	0.35 ± 0.11	0.25 ± 0.02	+0.8	$[2,4]$	0.65 ± 0.21	0.37 ± 0.11	+1.2
$[4,5]$	0.35 ± 0.11	0.22 ± 0.02	+1.1	$[4,6]$	0.64 ± 0.22	0.35 ± 0.10	+1.2
$[5,6]$	0.34 ± 0.12	0.23 ± 0.02	+0.9	$[6,8]$	0.63 ± 0.23	0.54 ± 0.12	+0.4
$[6,7]$	0.34 ± 0.2	0.25 ± 0.02	+0.8				
$[7,8]$	0.34 ± 0.13	0.23 ± 0.02	+0.8				

- Agreement between theory and experiment at $\sim 1 \sigma$
- but: experiment systematically lower than theory prediction for all available FF parametrizations:
- LCSR FFs from KMPW[Khodjamirian et al.] and BZ[Ball,Zwicky]
- lattice QCD[Bouchard et al.]

$B \rightarrow K \mu^{+} \mu^{-}$and \boldsymbol{R}_{K}

$$
B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}
$$

$10^{7} \times B R$	Theory (SM)	Experiment	Pull	$B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}$			
[0.1, 0.98]	0.31 ± 0.09	0.29 ± 0.02	$+0.2$	$10^{7} \times B R$	Theory (SM)	Experiment	Pull
[1.1, 2]	0.32 ± 0.10	0.21 ± 0.02	+1.1				
[2, 3]	0.35 ± 0.11	0.28 ± 0.02	+0.6	[0.1, 2]	0.62 ± 0.19	0.23 ± 0.11	+1.8
[3, 4]	0.35 ± 0.11	0.25 ± 0.02	+0.8	$[2,4]$	0.65 ± 0.21	0.37 ± 0.11	+1.2
[4, 5]	0.35 ± 0.11	0.22 ± 0.02	+1.1	[4, 6]	0.64 ± 0.22	0.35 ± 0.10	+1.2
[5, 6]	0.34 ± 0.12	0.23 ± 0.02	+0.9	[6, 8]	0.63 ± 0.23	0.54 ± 0.12	+0.4
$[6,7]$	0.34 ± 0.12	0.25 ± 0.02	+0.8				

- Agreement between theory and experiment at $\sim 1 \sigma$
- but: experiment systematically lower than theory prediction for all available FF parametrizations:
- LCSR FFs from KMPW[Khodjamirian et al.] and BZ[Ball,Zwicky]
- lattice QCD[Bouchard et al.]
- $R(K)=\operatorname{Br}\left(B \rightarrow K \mu^{+} \mu-\right) / \operatorname{Br}\left(B \rightarrow K e^{+} e^{-}\right) \stackrel{\text { exp. }}{=} 0.75_{-0.07}^{+0.09} \pm 0.04$
2.6 sigma deviation from clean SM prediction $R(K)=1$

$B_{s} \rightarrow \phi \mu^{+} \mu^{-}$

$B_{s} \rightarrow \phi \mu^{+} \mu^{-}$			
$10^{7} \times B R$	Theory (SM)	Experiment	Pull
$[0.1,2]$.	1.81 ± 0.36	1.11 ± 0.16	+1.8
$[2 ., 5]$.	1.88 ± 0.32	0.77 ± 0.14	+3.2
$[5 ., 8]$.	2.25 ± 0.41	0.96 ± 0.15	+2.9
$[15,18.8]$	2.20 ± 0.17	1.62 ± 0.20	+2.2

- Tension between theory and experiment at $\sim 3 \sigma$
- but: strong dependence on hadronic form factors (LCSR FFs from BSZ[Bharucha,Straub,Zwicky])
- better: study clean observables
\rightarrow not enough statistics yet ...
- $B R\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)$not conclusive as single observable, but as ingredient of global analysis

Possible explanations

- statistical fluctuation of data
\rightarrow perform consistence checks [Matias,Serra]

Possible explanations

- statistical fluctuation of data
\rightarrow perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
$-P_{i}^{\prime}$ observables are not very sensitive to FFs but: power corrections/correlations?
- cannot explain tension in R_{K}

Possible explanations

- statistical fluctuation of data
\rightarrow perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
$-P_{i}^{\prime}$ observables are not very sensitive to FFs but: power corrections/correlations?
- cannot explain tension in R_{K}
- effect from charm resonances [Lyon,Zwicky]
+ could affect the anomalous bins of P_{5}^{\prime}
- cannot explain tension in R_{K}

Possible explanations

- statistical fluctuation of data
\rightarrow perform consistence checks [Matias,Serra]
- underestimated form factor uncertainties?
$-P_{i}^{\prime}$ observables are not very sensitive to FFs but: power corrections/correlations?
- cannot explain tension in R_{K}
- effect from charm resonances [Lyon,Zwicky]
+ could affect the anomalous bins of P_{5}^{\prime}
- cannot explain tension in R_{K}
- new physics (Z^{\prime}-models, lepto-quarks) + can explain tension in R_{K} if coupled only to muons

Global Fit: Framework

Form factor input:

- large recoil: LCSR form factors mainly from KMPW
- low recoil: lattice form factors from [Horgan et al.; Bouchard et al.]

Global Fit: Framework

Form factor input:

- large recoil: LCSR form factors mainly from KMPW
- low recoil: lattice form factors from [Horgan et al.; Bouchard et al.]

Observables:

- $B_{(s)} \rightarrow\left(K^{*}, \phi\right) \mu^{+} \mu^{-}$: BRs + angular observables
- $B \rightarrow K \mu^{+} \mu^{-}$: BRs charged + neutral mode
- $B \rightarrow X_{s} \gamma, B \rightarrow K^{*} \gamma\left(A_{I}\right.$ and $\left.S_{K^{*} \gamma}\right), B \rightarrow X_{s} \mu^{+} \mu^{-}, B_{s} \rightarrow \mu^{+} \mu^{-}$

Global Fit: Framework

Form factor input:

- large recoil: LCSR form factors mainly from KMPW
- low recoil: lattice form factors from [Horgan et al.; Bouchard et al.]

Observables:

- $B_{(s)} \rightarrow\left(K^{*}, \phi\right) \mu^{+} \mu^{-}$: BRs + angular observables
- $B \rightarrow K \mu^{+} \mu^{-}$: BRs charged + neutral mode
- $B \rightarrow X_{s} \gamma, B \rightarrow K^{*} \gamma\left(A_{I}\right.$ and $\left.S_{K^{*} \gamma}\right), B \rightarrow X_{s} \mu^{+} \mu^{-}, B_{s} \rightarrow \mu^{+} \mu^{-}$

Frequentist $\Delta \chi^{2}$-fit:

- model hypothesis for $\left\{C_{i}\right\}$ with n degrees of freedom
- Experimental and theoretical correlation matrix included (theory uncertainties treated as Gaussian)
- SM-pull (= by how many σ is $\left\{C_{i}^{\text {SM }}\right\}$ disfavoured compared to $\left\{C_{i}^{\mathrm{ft}}\right\}$ under the model hypothesis)

1D scenarios

Coefficient	Best fit	1σ	3σ	Pull ${ }_{\mathrm{SM}}$
$\mathcal{C}_{7}^{\mathrm{NP}}$	-0.02	$[-0.04,-0.00]$	$[-0.07,0.03]$	1.2
$\mathcal{C}_{9}^{\mathrm{NP}}$	-1.09	$[-1.29,-0.87]$	$[-1.67,-0.39]$	4.5
$\mathcal{C}_{10}^{\mathrm{NP}}$	0.56	$[0.32,0.81]$	$[-0.12,1.36]$	2.5
$\mathcal{C}_{7}^{\mathrm{NP}}$	0.02	$[-0.01,0.04]$	$[-0.06,0.09]$	0.6
$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	0.46	$[0.18,0.74]$	$[-0.36,1.31]$	1.7
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	-0.25	$[-0.44,-0.06]$	$[-0.82,0.31]$	1.3
$\mathcal{C}_{9}^{\mathrm{NP}}=\mathcal{C}_{10}^{\mathrm{NP}}$	-0.22	$[-0.40,-0.02]$	$[-0.74,0.50]$	1.1
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}$	-0.68	$[-0.85,-0.50]$	$[-1.22,-0.18]$	4.2
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	-1.06	$[-1.25,-0.85]$	$[-1.60,-0.40]$	4.8

Large negative NP-contribution to \mathcal{C}_{9} needed!

Channel decomposition

Fit	$\mathcal{C}_{9}^{\text {NP }}$ Bestfit	1σ	Pull
All $b \rightarrow s \mu \mu$	-1.09	$[-1.29,-0.87]$	4.5
All $b \rightarrow s \mu \mu$ excluding [6,8] region	-0.99	$[-1.23,-0.75]$	3.8
Only $B \rightarrow K \mu \mu$	-0.85	$[-1.67,-0.20]$	1.4
Only $B \rightarrow K^{*} \mu \mu$	-1.05	$[-1.27,-0.80]$	3.7
Only $B_{s} \rightarrow \phi \mu \mu$	-1.98	$[-2.84,-1.29]$	3.5
Only $b \rightarrow s \mu \mu$ at large recoil	-1.30	$[-1.57,-1.02]$	4.0
Only $b \rightarrow s \mu \mu$ at low recoil	-0.93	$[-1.23,-0.61]$	2.8

- different decay channels and q^{2}-regions point to the same NP solution
- overlap of 1σ fit regions at $\mathcal{C}_{9}^{\mathrm{NP}} \sim-1.1$

What about other Wilson coefficients?

		$\mathcal{C}_{7}^{\mathrm{NP}}$	$\mathcal{C}_{9}^{\mathrm{NP}}$	$\mathcal{C}_{10}^{\mathrm{NP}}$	$\mathcal{C}_{7^{\prime}}^{\mathrm{NP}}$	$\mathcal{C}_{9^{\prime}}^{\mathrm{NP}}$	$\mathcal{C}_{10}^{\mathrm{NP}}$
$\mathcal{C}_{9}^{\mathrm{NP}}$	4.47	0.07	${ }^{*}$	1.54	0.92	2.00	1.89

Complete 6D fit

Coefficient	1σ	2σ	3σ
$\mathcal{C}_{7}^{\mathrm{NP}}$	$[-0.02,0.03]$	$[-0.04,0.04]$	$[-0.05,0.08]$
$\mathcal{C}_{9}^{\mathrm{NP}}$	$[-1.4,-1.0]$	$[-1.7,-0.7]$	$[-2.2,-0.4]$
$\mathcal{C}_{10}^{\mathrm{NP}}$	$[-0.0,0.9]$	$[-0.3,1.3]$	$[-0.5,2.0]$
$\mathcal{C}_{7^{N}}^{\mathbb{N P}}$	$[-0.02,0.03]$	$[-0.04,0.06]$	$[-0.06,0.07]$
$\mathcal{C}_{99^{\mathrm{NP}}}$	$[0.3,1.8]$	$[-0.5,2.7]$	$[-1.3,3.7]$
$\mathcal{C}_{10^{\prime}}^{\mathrm{NP}}$	$[-0.3,0.9]$	$[-0.7,1.3]$	$[-1.0,1.6]$

- \mathcal{C}_{9} consistent with SM only above 3σ
- All other Wilson coefficients consistent with $\mathrm{SM}\left(\mathcal{C}_{9}^{\prime}\right.$ at $\left.2 \sigma\right)$
- total SM-pull of 6D-fit: 3.6σ

New Physics vs. Charm

$$
\mathcal{C}_{9}^{\text {eff }}\left(q^{2}\right)=\mathcal{C}_{9 \text { SMpert. }}^{\text {eff }}\left(q^{2}\right)+\mathcal{C}_{9}^{\mathrm{NP}}+\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)
$$

- NP contribution $\mathcal{C}_{9}^{\mathrm{NP}}$ enters always together with non-perturbative charm-contribution $\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)$
- $\mathcal{C}_{9}^{\text {NP }}: q^{2}$-independent
$\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)$: pronounced q^{2}-dependence expected

New Physics vs. Charm

$$
\mathcal{C}_{g}^{\text {eff }}\left(q^{2}\right)=\mathcal{C}_{9 \text { SMpert. }}^{\text {eff }} .\left(q^{2}\right)+\mathcal{C}_{9}^{\mathbb{N P}}+\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)
$$

- NP contribution $\mathcal{C}_{9}^{\mathrm{NP}}$ enters always together with non-perturbative charm-contribution $\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)$
- $\mathcal{C}_{9}^{\mathrm{NP}}: q^{2}$-independent $\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)$: pronounced q^{2}-dependence expected
- perform individual fits in different q^{2}-regions

results compatible with q^{2}-independent shift!

Lepton-flavour non-universality

- measurement of R_{K} suggests violation of LFU
- allow for independent contributions $\mathcal{C}_{i \mu}^{\mathrm{NP}}$ and $\mathcal{C}_{i}^{\mathrm{NP}}$ to operators
- add electron-channels $B \rightarrow K^{(*)} e^{+} e^{-}$to the global fit

fit prefers NP coupling to $\mu^{+} \mu^{-}$but not to $e^{+} e^{-}$
(SM-pulls typically increase by $\sim 0.5 \sigma$ under this hypothesis)

Conclusions

- several $\sim 3 \sigma$ anomalies in $b \rightarrow s \ell^{+} \ell^{-}$data:

$$
P_{5}^{\prime}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right), \quad B r\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right), \quad R_{K}
$$

- global fit gives $4-5 \sigma$ preferences for scenarios with negative $\mathcal{C}_{9}^{\mathrm{NP}} \sim-1.1$
- form factor uncertainties (factorizable power corrections) are under control
- alternative explanation via large charm-loop effects:
- fit compatible with q^{2}-independent effect
- cannot explain R_{K}
- R_{K} favours LFU violation with NP coupling only to $\mu^{+} \mu^{-}$, not to $e^{+} e^{-} \quad \Rightarrow \quad$ search for $R_{K^{*}}, R_{\phi}<1$!

Backup

4ロ〉4吕〉4三>4 三

Lepton-flavour non-universality

- assume NP in $\mathcal{C}_{i \mu}^{\mathrm{NP}}$, but no NP in $\mathcal{C}_{i e}^{\mathrm{NP}}$
- Predictions for $R_{K}, R_{K^{*}}, R_{\phi}$ for best-fit points:

	$R_{K}[1,6]$	$R_{K^{*}}[1.1,6]$	$R_{\phi}[1.1,6]$
SM	1.00 ± 0.01	1.00 ± 0.01	1.00 ± 0.01
$\mathcal{C}_{9}^{\mathrm{NP}}=-1.11$	0.79 ± 0.01	0.87 ± 0.08	0.84 ± 0.02
$\mathcal{C}_{9}^{\mathrm{NP}}=-\mathcal{C}_{10}^{\mathrm{NP}}=-0.69$	0.67 ± 0.01	0.71 ± 0.03	0.69 ± 0.01
$\mathcal{C}_{9}^{\mathrm{NP}}=-1.16, \mathcal{C}_{10}^{\mathrm{NP}}=0.35$	0.71 ± 0.01	0.78 ± 0.07	0.76 ± 0.01

\Rightarrow search for $R_{K^{*}}, R_{\phi}<1$!

Comparison with Altmannshofer/Straub

our analysis (DHMV)
FF input

FF correlations
$B \rightarrow K^{*} \mu^{+} \mu^{-}$ observables
mainly KMPW
from large-recoil symmetries

+ power corrections
$P_{i}^{(\prime)}$ all bins

Altmannsh./Straub (AS)
BSZ
from BSZ calculation
S_{i} bins within $[1,6]$

Comparison with Altmannshofer/Straub

our analysis (DHMV)
FF input

FF correlations
$B \rightarrow K^{*} \mu^{+} \mu^{-}$ observables
mainly KMPW
from large-recoil symmetries

+ power corrections
$P_{i}^{(\prime)}$ all bins

Altmannsh./Straub (AS)
BSZ
from BSZ calculation
S_{i} bins within $[1,6]$

AS: + exact assessment of correlations for BSZ form factors

- depends on model-assumptions of and is limited to this particular set of form factors

DHMV: + model-independent determination of dominant FF correlations

- correlations only up to symmetry breaking corrections of order $\mathcal{O}\left(\Lambda / m_{b}\right)$ which can only be estimated
\Rightarrow Analyses complement each other

Comparison with Altmannshofer/Straub

: On:

Results in reasonably good agreement!

Implementation of hadronic uncertainties

Form factors: Symmetry-breaking corrections:

$$
F\left(q^{2}\right)=F^{\mathrm{soft}}\left(q^{2}\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}
$$

- central values for a_{F}, b_{F} from fit to the full form factor F (taken from LCSR)
- conservative error estimate: assign $\sim 100 \%$ errors to $a_{F}, b_{F}=\mathcal{O}\left(\Lambda / m_{B}\right) \times F$

Implementation of hadronic uncertainties

Form factors: Symmetry-breaking corrections:

$$
F\left(q^{2}\right)=F^{\mathrm{soft}}\left(q^{2}\right)+\Delta F^{\alpha_{s}}\left(q^{2}\right)+a_{F}+b_{F} \frac{q^{2}}{m_{B}^{2}}
$$

- central values for a_{F}, b_{F} from fit to the full form factor F (taken from LCSR)
- conservative error estimate: assign $\sim 100 \%$ errors to $a_{F}, b_{F}=\mathcal{O}\left(\Lambda / m_{B}\right) \times F$

Long-distance charm effects $\mathcal{C}_{9}^{c \bar{c}}\left(q^{2}\right)$ at large recoil:

- partial computation using LCSR: KMPW[Khodjamirian et al.] \rightarrow yields $\mathcal{C}_{9}^{c \bar{c} i}{ }_{\mathrm{KMPW}}>0 \quad$ (enhances anomalies)
- we take

$$
\mathcal{C}_{9}^{c \bar{c} i}\left(q^{2}\right)=s_{i} \mathcal{C}_{9}^{c \bar{c}} i \quad i \quad s_{i}=0 \pm 1, \quad \text { for } \quad i=0, \|, \perp
$$

Fit: Statistical Framework

$$
\chi^{2}\left(\left\{C_{i}\right\}\right)=\left(\vec{O}_{\exp }-\vec{O}_{\mathrm{th}}\left(\left\{C_{i}\right\}\right)\right)^{T}\left(\operatorname{Cov}_{\mathrm{exp}}+\operatorname{Cov}_{\mathrm{th}}\right)^{-1}\left(\vec{O}_{\mathrm{exp}}-\vec{O}_{\mathrm{th}}\left(\left\{C_{i}\right\}\right)\right)
$$

Frequentist $\Delta \chi^{2}$-fit:

- model hypothesis for $\left\{C_{i}\right\}$ with n degrees of freedom
- Experimental correlation matrix $\operatorname{Cov}_{\text {exp }}$
- Theoretical correlation matrix $\operatorname{Cov}_{\mathrm{th}}$:
- assume $\operatorname{Cov}_{\text {th }}\left(C_{i}\right)=\operatorname{Cov}_{\text {th }}\left(C_{i}^{S M}\right)$
\rightarrow check: repeat fit for $\operatorname{Cov}_{\mathrm{th}}\left(C_{i}\right)=\operatorname{Cov}_{\text {th }}\left(C_{i}^{\text {fit }}\right)$
- treat all systematic uncertainties as Gaussian
- determine
- best-fit point $\left\{C_{i}^{\text {fit }}\right\}$
- confidence level regions
- SM-pull (= by how many $\sigma\left\{C_{i}^{S M}\right\}$ is disfavoured compared to $\left\{C_{i}^{\text {fit }}\right\}$ under the model hypothesis)

