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Effective Field Theory: Motivation

@ SM renormalizable theory gives a good description of
particle physics, including the Higgs boson h, up to energy
scale A ~ 1 TeV. Why introduce EFT?

@ Current LHC at 13 TeV run can

(1) produce any accessible new particles (direct discovery).

(2) probe new interactions of SM particles resulting from
unobserved particles at inaccessible higher energy scale A
(indirect discovery).

@ EFT classifies all possible interactions for a given set of
fields. (Classification enables one to pursue objective (2)
for a given set of particles with known symmetry
properties.)

@ EFT tells you what modifications to SM couplings are
possible.

(EFT only valid to energy scale A, where it is replaced by
another EFT.)



Effective Field Theory: Motivation

@ Generalize SM by constructing EFT generalizations. Add
all possible non-renormalizable higher dimension
operators d > 4 with arbitrary coefficients and power
suppressions 1/A%~4. Use experiment to bound these new
interactions. Effectively probes low-energy E < A
consequences of fundamental high energy theory with new
particles of mass ~ A.

L=Lsw+ 155 Zco‘d

@ Any fundamental high energy theory with new particles of
mass A yields EFT description at E < A. Analysis is model
independent.



SM Higgs Sector

SM written in terms of scalar Higgs doublet
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SM Higgs Sector

SM written in terms of scalar four-dimensional irrep ¢ of O(4).
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SM Higgs Sector

Cartesian Coordinates
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@ ¢ transforms linearly as 4 under G = O(4).

@ hinvariant (singlet) under H = O(3).

@ ¢ = (¢!, % ©°) transforms linearly as triplet under
H = O(3).

* V(¢) depends on ¢ - ¢ and h. There are non-derivative
couplings of .

* M2 = 2)\V2, mg, =0.



SM Higgs Sector

Polar Coordinates
dp=((+h n), neeS=nn=1.
1 2
Lsm = % (9uh)? + (v + hY?9,n - 9"n — 7 <2vh + h2>

h—h,  n(e)—O0n(p), OTO=1.

@ hinvariant (singlet) under G = O(4) and H = O(3).
@ n(y) transforms non-linearly under G = O(4), but

o = (¢!, 9%, ©°) transforms linearly as triplet under
= 0(3).

~ V(¢) depends only on h. Goldstone bosons are
derivatively coupled.
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SM Higgs Sector




Custodial Symmetry

SM has enhanced global symmetry
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SM Higgs Sector

@ Scalar fields are coordinates ¢’ of scalar manifold M.
Scalar field redefinitions are change of coordinates.
Physical observables independent of coordinates (= scalar
fields) used.

@ Tangent vectors to M define scalar metric g;i(¢). Parallel
transport on M depends on geometric invariants
(curvature) of M which are independent of the choice of
coordinates (= scalar fields).

@ Scalar metric determined from scalar KE term.
SM scalar manifold is flat = curvature vanishes. Same
result of zero curvature for both Cartesian and polar
coordinates. No indication for any new physics scale A at
which theory breaks down. Hallmark of renormalizable
theory.



HEFT

HEFT written in terms of singlet h and triplet ¢ = (', 2, ©°).

@ Non-trivial scalar metric since 3 higher dimensional
2-derivative scalar operators = scalar manifold M is
curved.

@ Coordinate-independent Riemann curvature tensor
determines physical observables.
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where ga,(y) is metric on G/H = S c M.
3 angular coordinates of S° are ¢/ v.



Curved Spaces: Analogy with General Relativity

General Relativity

@ Spacetime metric g, (x)
@ Curvature of spacetime: R,,,,-(x), '}, ()
@ Point particles travel on geodesics of curved spacetime.

@ Spacetime curvature sourced by T, .

HEFT

@ Scalar manifold metric g;(¢)

@ Curvature of scalar manifold M: Ri(¢), T'x(¢)

@ Scalar fields travel on geodesics of curved scalar manifold
M.

@ Scalar manifold curvature sourced by BSM Physics at
Energy Scale A = 4xf > v. This BSM Physics appears in
HEFT as higher dimension (non-renormalizable)
contributions to the two-derivative scalar KE term.



1-Loop Renormalization For Curved Scalar Manifold

@ Introduce covariant formalism for curved scalar manifold
M.
@ EOM of scalar field is geodesic of M.

95(0) (626 +Tj (0u9/) (9"0%)) — 7, =0

@ Variation of action using geodesic fluctuation of scalar field
to maintain covariance. For example, in sigma model with
S8 submanifold
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1-Loop Renormalization For Curved Scalar Manifold
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No non-covariant EOM terms proportional to §S/dx? which
vanish on-shell and do not contribute to S-matrix.
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@ 1-loop correction
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1-Loop Renormalization For Curved Scalar Manifold

1-loop correction of HEFT encapsulates many interesting
special cases in a unified way.

L= S0, h+ 3 F(RPGan() Dus®D ? — Vi(h) + K(h)wir

w' = qu0'Yeqr + ILo' Yilg
Need to specify F(h), K(h), V(h).

@ Chiral Perturbation Theory (theory of pions with no h):
F(h),K(h)= constant

@ SM Higgs boson h: F(h) = K(h) = v + h,
V(h) = \/4(h? 4 2vh)?

@ Goldstone boson h of enlarged global symmetry:
F(h)=sinh/f

@ Dilaton h: Introduce scale invariance via v — ve™/",
h/v=e¢e/"—1



Example of HEFT with Positive Curvature

Agashe, Contino and Pomarol (2005)



Example of HEFT with Positive Curvature
O(5) — O(4) Composite Higgs Model
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@ Vacuum manifold of Composite Higgs Model
O(5)/0(4) = S* with constant positive curvature set by
scale f. Point ¢ is O(4) invariant point = SMEFT.
There are 4 (approximate) Goldstone bosons: ¢'23:4,

Lk = % [fZ (9ux)? + 2 sin? Xaﬂnaﬂn}

@ HEFT vacuum manifold O(4)/0O(3) = S® with curvature set
by EW vev v = fsinx = fsin (xo + #) = fxo + h.
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Example of HEFT with Negative Curvature

0(4,1)/0(4) = H*




Example of HEFT with Negative Curvature

O(4,1) — O(4) Model
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@ Vacuum manifold O(4,1)/0(4) = H* with constant
negative curvature set by scale f, f2 = (¢%)° — (¢/)°.
Point ¢ is O(4) invariant point = SMEFT.

There are 4 (approximate) Goldstone bosons: ¢'23:4,

Lp = % |2 (9,207 + 2 sin? x9,n0" n|

@ HEFT vacuum manifold O(4)/0O(3) = S® with curvature set
by EW vev v = fsinh y.
vz k2
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@ SM c SMEFT C HEFT.

@ New Physics models for Higgs boson h described by EFT.
@ EFT scalar kinetic energy term defines scalar metric g;(¢).

* SM metric is trivial gji(¢) = 0; and M is flat. Rjy = 0.
SM (renormalizable theory) valid to arbitrarily high energies.
* HEFT metric is non-trivial and M is curved.

9i(¢) = ( F(h)zgab(w) ? )

Rijx # 0 = 3 new physics scale f (in addition to v) at which
EFT breaks down.
Different predictions for W, W, — W, W, and W, W, — hh
scattering, h couplings, etc. from SM.
@ Covariant description on curved manifold maintains
manifest coordinate invariance and gauge invariance.
@ Curvature: Gauge curvature (gauge field strength) and
Scalar manifold curvature both contribute.

@ Interesting possibility of negative curvature arises.



