50th Moriond EWK, La Thuile, March 13, 2016

$B \to K^* \ell \ell$ **Contributions** (Zooming in on high q^2)

based on works in progress with Simon Braß and Ivan Nisandzic

1

Gudrun Hiller, Dortmund

bmb+f - Förderschwerpunkt

Elementarteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

 $B \rightarrow K^*(\rightarrow K\pi)\mu\mu$ are FCNC induced and highly sensitive to flavor physics in and beyond SM; lots of diagnozing power in angular distribution regarding CP, Dirac structure and hadronic physics.

Current global $b \rightarrow s$ fits exhibit "anomalies", \rightarrow talk by Lars Hofer

Studies of $B \to K^*(\to K\pi)\mu\mu$ is key measurement (LHCb roadmap 0912.4179), measurements by CMS, ATLAS and by previous experiments at Tevatron (CDF) and B-factories (Belle, BaBar). Today almost 3000 signal events analyzed (Run I, 7+8 TeV, 3fb^{-1} LHCb); improved precision in Run II and Belle II in nearer term future. \to talk by Johannes Albrecht

New level of precision requires and allows to revisit backgrounds.

Charmonium contributions $B \to K^{(*)}(\bar{c}c) \to K^{(*)}\mu\mu$; peaks and wiggles

Fig from 9910221, solid: SM, dotted and dot-dashed: BSM scenario

Low dilepton mass window below $J/\Psi \rightarrow$ QCD factorization High dilepton mass window above $\psi(2S) \rightarrow$ OPE THIS TALK

High q^2 /low recoil OPE

Operator Product Expansion in $1/q^2$, $q^2 \sim \mathcal{O}(m_b^2)$ Buchalla, Isidori,Grinstein,Pirjol,

Beylich, Buchalla, Feldmann includes charm effects after binning

Bin size and position affect how well duality works. Can't tell from OPE within. Resonance "wiggles" observed in $B \rightarrow K \mu \mu$. LHCb 1307.7595

$B \to K \mu \mu$ in high q^2 region

To understand uncertainties related to chosen binning quantitatively, model the q^2 -distributions locally by a test case model for the OPE: $e^+e^- \rightarrow hadrons$ data + dispersion relation + "factorization assumption" Krüger, Sehgal

 $\eta_c \neq 1$ models effects beyond naive factorization; ultimately, $\eta_c = \eta_c(q^2)$ and complex; $|\eta_{J/\psi K}| = 1.39 \pm 0.11, |\eta_{\psi(2S) K}| = 1.75 \pm 0.10$ Assuming SM $B \to K \mu \mu$ spectrum $\eta_c(K) \simeq -2.5$ gives good fit for $q^2 > m_{\Psi(2S)}^2$ Lyon, Zwicky $B \rightarrow K^* \mu \mu$ transversity amplitudes in low recoil OPE*

 $A_i^{L,R}(q^2) \propto \underbrace{C^{L,R}(q^2)}_{SM/BSM} \cdot \underbrace{f_i(q^2)}_{form factor} + \text{small param} \times O(1/m_b), \quad i = \bot, ||, 0$

 $C^{L,R} = (C_9^{ ext{eff}} \mp C_{10}) + \kappa rac{2\hat{m}_b}{\hat{s}} C_7^{ ext{eff}} ext{ is universal! Bobeth, GH, van Dyk}$

Probe the OPE with its key feature, universality!

To remove model-dependence use "ratio"-observables where $C^{L,R}$: drops out, e.g. $F_L = \frac{|A_0^L|^2 + |A_0^R|^2}{\sum_{X=L,R}(|A_0^X|^2 + |A_{\perp}^X|^2 + |A_{\parallel}^X|^2)} = \frac{f_0^2}{f_0^2 + f_{\perp}^2 + f_{\parallel}^2}$

In general $\eta_c(K_i^*, q^2)$, i.e., the resonance "wiggles" could be different for each transversity amplitude which does not drop out.

^{*} assuming only V-A operators

black data: LHCb 1512.04442, red boxes: OPE, model-independent

2 GeV² bins appear universal; wiggles signal bad bins (for OPE); could show up differently in obs, diagnose transversity structure

Zooming in on high q^2

2 GeV^2 bins

larger binning data consistent with universality within uncertainties $|\eta_{J/\psi K^*}| = 0.95 \pm 0.07, \quad |\eta_{\psi(2S) K^*}| = 0.92 \pm 0.05$

black data: LHCb, vs SM curves red: "unbinned" OPE, blue $\eta_c(K^*) = 1$, green $\eta_c(K^*) = -1$. $S_5 \propto P'_5$ and A_{FB} less sensitive to local wiggles than branching ratio. Constrain model-parameter $\eta_c(K^*)$ in future from the latter.

Testing the SM

Low recoil fit $B \to K^* \mu \mu$ only, incl. Br, LHCb and A_{FB}^{CMS} .

red: OPE, blue $\eta_c(K^*) = 1$, green $\eta_c(K^*) = -1$, 68 and 95 %CL

Consistent with plot to the right shows 3 σ regions, pink: full high q^2 bin Hofer et al 1510.04239 and SM.

- High q^2 region in semileptonic rare $|\Delta b| = |\Delta s| = 1$ decays is inhabited by wider charm resonances.

– Using a local model against the OPE provides a data-driven method to test the binning and limitations of the OPE.

- Further tests include Null tests of the angular distribution.

– SM fits on $B \to K^* \mu \mu$ at low recoil are consistent with the SM, however, large BSM effects $\delta C_9 \sim -1$ are also allowed.

- -We look forward to future data.