

BEH Scalar to Bosons at the LHC

Seth Zenz, Imperial College London On Behalf of the ATLAS and CMS Collaborations

Moriond Electroweak - La Thuile, Italy 16 March 2016

Imperial College London

• I 3 TeV Results

- Scalar decays to: $\gamma\gamma$, $ZZ \rightarrow 4\ell$
- Different choices made for low-statistics 2015 data
 - CMS:"Run I-like" event categorization
 - ATLAS: count in single category, cross section measurements
- yy + MET ATLAS: CONF-2016-011
- $h^* \rightarrow hh \rightarrow bbyy \text{ ATLAS: CONF-2016-004}$
- $h^* \rightarrow hh \rightarrow bb\tau\tau$ CMS: HIG-15-012, HIG-15-013
- 8 TeV:WW differential measurement CMS: HIG-15-010

New today!

CMS ZZ: HIG-15-004

CMS yy: HIG-15-005

ATLAS ZZ: CONF-2015-059

ATLAS γγ: CONF-2015-060

ATLAS xsec: CONF-2015-069

- Excellent mass resolution: $yy, ZZ \rightarrow 4\ell$
- Large cross section:WW

77* → 4ℓ

- Two same-flavor, opposite-sign lepton pairs
- ATLAS Selection
 - e (µ) p_T (E_T) > 7 (6) GeV, $|\eta| < 2.47$ (2.7)
 - Leading 3 leptons: p_T > 20, 15, 10GeV
 - FSR Recovery: add at most one photon to "improve" m_{lly}, priority to photons close to the leading dilepton
- CMS Selection
 - e (μ) p_T > 7 (5) GeV, |η| < 2.5 (2.4)
 - Leading 2 leptons: pT > 20, 10 GeV
 - FSR Recovery: attached to closest lepton
- Signal extraction
 - ATLAS: Z mass-constrained kinematic fit, fiducial cross section for 118-129 GeV
 - CMS: kinematic discriminants (118-130 GeV)

- Main background: non-resonant ZZ* (irreducible)
 - Simulation shape prediction
 - Normalization checked in m4l sidebands
- Smaller reducible backgrounds: Z+jets, tt
 - Measured from control regions
 - ATLAS: inverted d_0 cut and isolation
 - CMS: 2 methods give good agreement

S. Zenz - Scalar to Bosons - Moriond EW - 16 March 2016

$m_{4\ell}$ Distribution

		full mass range			ttv, vvv, wZ				
ΔΤΙΔς	4μ	1.79 ± 0.21	1.67 ± 0.20	0.64 ± 0.06	0.08 ± 0.03	2.3	2.39 ± 0.21	1	
	$2e2\mu$	1.19 ± 0.14	1.06 ± 0.13	0.44 ± 0.04	0.07 ± 0.03	2.1	1.57 ± 0.14	1	
118-129 GeV	$2\mu 2e$	1.07 ± 0.16	0.96 ± 0.15	0.34 ± 0.05	0.09 ± 0.02	2.2	1.40 ± 0.16	2	
	4 <i>e</i>	1.01 ± 0.15	0.88 ± 0.13	0.32 ± 0.05	0.09 ± 0.02	2.1	1.30 ± 0.14	0	
-	Total	5.06 ± 0.60	4.57 ± 0.54	1.74 ± 0.19	0.34 ± 0.06	2.2	6.65 ± 0.58	4	
									í

S. Zenz - Scalar to Bosons - Moriond EW - 16 March 2016

CMS: Signal extraction

- Top: kinematic discriminant between signal and background
- Bottom: kinematic discriminant to identify VBF-like events
- Define 6 channels:
 - 4e, 2e2µ, 4µ
 - VBF ($D_{jet} > 0.5$), untagged

$$\mathcal{L}_{2D}(m_{4l}, \mathcal{D}_{bkg}^{kin}) = \mathcal{L}(m_{4l})\mathcal{L}(\mathcal{D}_{bkg}^{kin}|m_{4l})$$

- Maximize Signal-to-Background using mass: $m_{YY}^2 = 2E_1E_2(1 - \cos\Delta\alpha)$
 - Photon energy resolution
 - Correct vertex identification

- ATLAS: MVA using Σp_T², Σp_T of vertex tracks, diphoton balancing with vertex tracks, trajectory from calorimeter segmentation
- CMS
 - MVA using Σp_T^2 , diphoton balancing with vertex tracks
 - Estimator of correct ID probability propagated to photon categorization
 - More details: I. Kucher's YSF talk last night

- Both experiments: set of variables reflecting the expected shower shape and containment, key variables corrected for data/MC agreement
- ATLAS: high granularity first ECAL layer for π^0 discrimination, cut-based ID
- CMS: MVA combining shower shape and isolation variables

- Use vertexing, photon information, kinematics to produce classifier that indicates the expected diphoton resolution
- Divide events into 4 categories based on output of classifier
- Additional categories:
 - TTH events require a b-tag and:
 - Lepton $+ \ge 2$ jets; or
 - ≥4 jets
 - VBF events tagged additional, similar multivariate discriminator (2 categories)
- Signal model resolution: 1.25-2.63 GeV depending on category
 - Inclusive: I.94 GeV
 - ATLAS inclusive: 1.68 GeV

- ATLAS: templates from γγ, γ-jet, jet-jet background
 - Normalization from data-driven measurement
 - Number of signal events in fit to background-only samples used as bias estimate
- CMS: discrete profiling method
 - Range of functions considered that fit background well
 - Choice of function made by signal fit, bias accounted for by other possibilities

- Both experiments: fix mass to Run I measurement, much more precise than constraints from Run 2 data
- CMS: sum over all categories, weighted over S/(S+B)

- Profile likelihood fit yields:
 - Observed (expected significance at 125.09 GeV: 1.7σ (2.7 σ)
 - $\hat{\mu} = 0.69^{+0.47}_{-0.42}$ @ fixed 125.09 GeV

CMS ZZ: Cross Section

$$\begin{array}{l} p_{\rm T} > 20 \ {\rm GeV} \\ p_{\rm T} > 10 \ {\rm GeV} \\ p_{\rm T} > 7(5) \ {\rm GeV} \\ |\eta| < 2.5(2.4) \\ \mbox{Isolation} < 0.4 \cdot p_{\rm T} \\ 40 \ {\rm GeV} < m(Z_1) < 120 \ {\rm GeV} \\ 12 \ {\rm GeV} < m(Z_2) < 120 \ {\rm GeV} \\ 12 \ {\rm GeV} < m(Z_2) < 120 \ {\rm GeV} \\ \Delta R(\ell_i \ell_j) > 0.02 \ {\rm for \ any} \ i \neq j \\ m(\ell^+ \ell'^-) > 4 \ {\rm GeV} \\ 105 \ {\rm GeV} < m_{4\ell} < 140 \ {\rm GeV} \\ \end{array}$$

7+8 TeV: HIG-14-028 accepted for publication in JHEP

• All fully consistent with the Standard Model!

• All fully consistent with the Standard Model (as in Run I)

• Define signal regions with good efficiency for two benchmark models

ATLAS: $\gamma\gamma$ + Missing Energy

S. Zenz - Scalar to Bosons - Moriond EW - 16 March 2016

- Non-resonant hh production
 - Interference \Rightarrow very small SM cross section
 - Resonant: see talk from A. McCarn
- Large cross section from bb, good resolution from γγ
- 2.40 excess in Run 1 Phys. Rev. Lett. 114 (2015) 081802, arXiv: 1406.5053
- Fit to sidebands in 0-tag region to derive continuum background shape

ATLAS: $h^* \rightarrow hh \rightarrow bbyy$

CMS: I 3 TeV $h^* \rightarrow hh \rightarrow bbTT$

CMS: 8 TeV $h^* \rightarrow hh \rightarrow bbTT$

 \mathbf{m}_{T_2} : upper kinematic bound on the mass of the di-scalar system in each event

Non-resonant analysis						
Process	2jet0tag	2jet1tag	2jet2tag			
Non-resonant HH production	1.3 ± 0.2	5.1 ± 0.7	4.7 ± 0.6			
$Z \rightarrow \tau \tau$	120.3 ± 11.1	17.7 ± 3.0	2.0 ± 0.8			
QCD multijet	27.9 ± 2.7	5.4 ± 1.0	0.7 ± 0.2			
W+jets	4.3 ± 0.8	0.4 ± 0.1	0.4 ± 0.1			
Z+jets (e, μ or jet faking τ_h)	0.7 ± 0.2	< 0.1	< 0.1			
tī	1.3 ± 0.2	3.4 ± 0.5	1.2 ± 0.2			
Di-bosons + single top	5.7 ± 1.0	1.1 ± 0.2	0.5 ± 0.1			
SM Higgs	3.7 ± 1.3	0.6 ± 0.2	0.2 ± 0.1			
Total expected	163.9 ± 11.4	28.6 ± 3.2	5.2 ± 1.1			
Observed data	165	26	1			

8 TeV

- WW \rightarrow eVuV, opposite sign
- Analysis inclusive in number of jets
 - Jet multiplicity correlated with p_{T,H}
 - To remove top: B-tag and soft non-isolated muon veto
- Correct to fiducial phase space to measure cross section in bins of reconstruction p_T
- Unfold distribution for final $d\sigma_{fid}/dp_T$ measurement

$$ec{p}_{\mathrm{T}}^{\mathrm{H}} = ec{p}_{\mathrm{T}}^{\ell\ell} + ec{E}_{\mathrm{T}}^{\mathrm{miss}}$$

Kinematic requirements for the $H \rightarrow W^+W^-$ fiducial phase space

Leading lepton $p_{\rm T}$	$p_{\rm T} > 20~{ m GeV}$
Sub-leading lepton $p_{\rm T}$	$p_{\rm T} > 10 { m GeV}$
Pseudorapidity of electrons and muons	$ \eta < 2.5$
Invariant mass of the two leptons	$m_{\ell\ell} > 12 { m GeV}$
Transverse momentum of the lepton pair	$p_{\mathrm{T}}^{\ell\ell} > 30 \mathrm{GeV}$
Invariant mass of the leptonic system in the transverse plane	$m_{\rm T}^{\ell\ell E_{\rm T}^{\rm miss}} > 50 { m GeV}$
No <i>E</i> _T ^{miss} cut applied	

• For each $p_{T,H}$ bin perform 2D fit in m_T , $\Delta \phi(\ell \ell, E_{T,miss})$

• Unfold using Singular Value Decomposition

$\sigma_{\rm fid} = 39 \pm 8$	$(stat) \pm 9$	(syst) fb
-------------------------------	----------------	-----------

Uncertainties on backgrounds contributions					
Source	Uncertainty				
<i>tī</i> , tW	$\sim 20-50\%$				
W+ jet	$\sim 40\%$				
WZ, ZZ	$\sim 4\%$				
$V\gamma/\gamma^*$	$\sim 30\%$				
Experimental uncerta	inties				
Source	Uncertainty				
Luminosity	2.6%				
Trigger efficiency	1 - 2%				
Lepton reconstruction and ID	3 - 4%				
Lepton energy scale	2 - 4%				
$E_{\rm T}^{\rm miss}$ modeling	2%				
Jet energy scale	10%				
Pileup multiplicity	2%				
B-mistag modeling	$\sim 3\%$				
Theoretical uncertainties					
Source	Uncertainty				
b-veto jet binning	$\sim 1-2\%$				
PDF	$\sim 1\%$				
WW shape	$\sim 1\%$				

Conclusions

- First 13 TeV measurements of scalar decays to $\gamma\gamma$ and $ZZ \rightarrow 4\ell$
 - Results remain consistent with SM
 - Statistics limited in 2015 run
- LHC Run 2 will make precise measurements of scalar boson properties and search for deviations from SM
 - Differential measurements
 - Anomalous trilinear couplings
 - In association with dark matter candidates
- Stay tuned for more data!

Extras

CMS ZZ and yy Mass

Iσ uncertainty on mass: 0.7-0.9 GeV Run I LHC Average: 125.09 ± 0.24 GeV

S. Zenz - Scalar to Bosons - Moriond EW - 16 March 2016

• Singular Value Decomposition

CMS ZZ: Cross Section

Signal process	\mathcal{A}_{fid} ϵ f_{nonf}		<i>f</i> nonfid	$(1+f_{\text{nonfid}})\epsilon$		
Individual Higgs boson production modes						
gg→H	0.382 ± 0.001	0.697 ± 0.001	0.118 ± 0.001	0.779 ± 0.001		
VBF	0.422 ± 0.001	0.707 ± 0.001	0.086 ± 0.001	0.768 ± 0.002		
WH	0.277 ± 0.001	0.686 ± 0.002	0.164 ± 0.002	0.799 ± 0.003		
ZH	0.302 ± 0.002	0.697 ± 0.003	0.172 ± 0.003	0.817 ± 0.004		
tīH	0.239 ± 0.001	0.687 ± 0.003	0.419 ± 0.007	0.975 ± 0.006		

CMS: ZZ Uncertainties

Summary of relative systematic uncertainties					
Common experimental uncertainties					
Luminosity	2.7 %				
Lepton identification/reconstruction efficiencies	4-9%				
Background related uncertainties					
QCD scale (q $\bar{q} \rightarrow$ ZZ, gg \rightarrow ZZ)	3 – 10 %				
PDF set (q $\bar{ ext{q}} ightarrow ext{ZZ}$, gg $ ightarrow ext{ZZ}$)	3 - 5 %				
Electroweak corrections (q $\bar{ extbf{q}} ightarrow extbf{ZZ}$)	1 - 15 %				
$gg \rightarrow ZZ K$ factor	10 %				
Reducible background (Z+X)	40 – 90 %				
VBF tagging efficiency (experimental)	7 - 14 %				
VBF tagging efficiency (theoretical)	15 – 25 %				
Signal related uncertainties					
QCD scale ($q\bar{q} \rightarrow VBF/VH$, $gg \rightarrow H/t\bar{t}H$)	3 – 10 %				
PDF set ($q\bar{q} \rightarrow VBF/VH$, $gg \rightarrow H/t\bar{t}H$)	3 - 4%				
Acceptance	2 %				
${ m BR}({ m H} o { m ZZ} o 4\ell)$	2 %				
Lepton energy scale	0.04 - 0.3 %				
Lepton energy resolution	20 %				
VBF tagging efficiency (experimental)	2-7%				
VBF tagging efficiency (theoretical)	5 – 15 %				

Channel	4e	4μ	2e2µ	4ℓ
$q\bar{q} \rightarrow ZZ$	0.33 ± 0.03	0.75 ± 0.05	0.92 ± 0.07	2.00 ± 0.14
$gg \rightarrow ZZ$	0.04 ± 0.01	0.08 ± 0.01	0.07 ± 0.01	$0.18^{+0.03}_{-0.02}$
Z+X	$0.17\substack{+0.15\\-0.09}$	0.19 ± 0.08	0.26 ± 0.10	$0.62^{+0.20}_{-0.16}$
Sum of backgrounds	$0.54\substack{+0.16\\-0.10}$	1.02 ± 0.09	1.25 ± 0.13	$2.80^{+0.25}_{-0.22}$
Signal ($m_{\rm H} = 125$ GeV)	$0.91\substack{+0.11\\-0.10}$	1.70 ± 0.15	2.21 ± 0.22	$4.82^{+0.44}_{-0.45}$
Total expected	$1.45^{+0.21}_{-0.16}$	2.72 ± 0.20	3.45 ± 0.29	$7.62^{+0.58}_{-0.56}$
Observed	1	3	4	8

118-130 GeV

Channel	4e	4µ	2e2µ	4ℓ
$q\bar{q} \rightarrow ZZ$	$18.3^{+1.9}_{-1.8}$	31.1 ± 2.0	$42.6^{+3.5}_{-3.3}$	$92.0^{+6.7}_{-6.4}$
$gg \rightarrow ZZ$	3.9 ± 0.6	5.9 ± 0.8	9.0 ± 1.3	$18.8^{+2.6}_{-2.5}$
Z+X	$2.2^{+2.0}_{-1.2}$	2.1 ± 0.9	3.2 ± 1.3	$7.5^{+2.5}_{-2.0}$
Sum of backgrounds	$24.4^{+3.0}_{-2.4}$	39.1 ± 2.5	$54.8^{+4.4}_{-4.2}$	$118.3^{+8.3}_{-7.8}$
Signal ($m_{\rm H} = 125$ GeV)	1.1 ± 0.1	1.9 ± 0.2	2.5 ± 0.2	5.5 ± 0.5
Total expected	$25.5^{+3.1}_{-2.5}$	$40.9^{+2.6}_{-2.5}$	$57.3^{+4.5}_{-4.4}$	$123.7^{+8.6}_{-8.2}$
Observed	17	49	43	109

>70 GeV

S. Zenz - Scalar to Bosons - Moriond EW - 16 March 2016

S. Zenz - Scalar to Bosons - Moriond EW - 16 March 2016