Opportunities with (semi)leptonic rare charm decays

Stefan de Boer

based on works with Gudrun Hiller, arXiv:1510.00311 [hep-ph]

51st Recontres de Moriond EW 2016

(Semi)leptonic rare charm decays

- Rare in the SM due to an effective GIM mechanism, e.g. $\mathcal{B}^{\rm nr}(D^+\to\pi^+\mu^+\mu^-)<7.3\times10^{-8}\quad \text{@CL=90\%}\qquad \text{[LHCb 2013],}$ thus sensitive to BSM physics.
- Convergence of calculations by means of α_s and $\Lambda_{\sf QCD}/m_c$?
- Unique up-type quark FCNC, complementary to K/B physics.
- SM null test, e.g. $\mathcal{B}(D^0 \to e^\pm \mu^\mp) < 1.3 \times 10^{-8} \quad \text{@CL=90\%} \qquad \text{[LHCb 2015]}.$

$D^+ \to \pi^+ \mu^+ \mu^-$ branching ratio

 q^2 is dilepton mass squared and dashed black line shows 90% CL experimental upper limit. Solid blue curve is non-resonant SM (N)NLO QCD prediction within OPE at $\mu_c = m_c$ and lighter blue band its μ_c -uncertainty. Orange band represents resonant modes modeled via Breit-Wigner shape to fit data and varying relative strong phases.

$D^+ \to \pi^+ \mu^+ \mu^-$ branching ratio at high q^2

Additional two (dot-dashed cyan and dotted purple) curves are $D^0 \rightarrow \mu^+ \mu^-$ -consistent model-independent BSM cases.

Angular observables, LFV and dineutrino decays

Approximate SM null tests, model-independently at high q^2

$$|A_{\rm FB}(D^+ \to \pi^+ \mu^+ \mu^-)| \lesssim 0.6$$
,
 $F_H(D^+ \to \pi^+ \mu^+ \mu^-) \lesssim 1.5$.

 $\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} = \frac{3}{4} (1 - F_H)(1 - \cos^2\theta) + A_{FB}\cos\theta + \frac{1}{2}F_H$ $(\theta = \measuredangle (l^-, D^+) \text{ in dilepton center-of-mass frame}).$

Angular observables, LFV and dineutrino decays

Approximate SM null tests, model-independently at high q^2

$$|A_{\rm FB}(D^+ \to \pi^+ \mu^+ \mu^-)| \lesssim 0.6$$
,
 $F_H(D^+ \to \pi^+ \mu^+ \mu^-) \lesssim 1.5$.

 $\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}\cos\theta} = \frac{3}{4}(1 - F_H)(1 - \cos^2\theta) + A_{FB}\cos\theta + \frac{1}{2}F_H$ $(\theta = \angle (l^-, D^+) \text{ in dilepton center-of-mass frame}).$

LFV and dineutrino modes may be close to experimental limits

$$\mathcal{B}(D^+ o \pi^+ e^{\pm} \mu^{\mp}) \lesssim 3 \cdot 10^{-6}$$
 @CL=90% [BaBar 2011],
 $\mathcal{B}(D^+ o \pi^+ \nu \bar{\nu}) \sim 10^{-5}$ sensitivity at BESIII.

Leptoquark models and flavor patterns

- May generate LNU in R(K) and $R(D^*)$ [Alonso et al. 2015], [Bauer et al. 2015], [Fajfer et al. 2015], talk by Nejc Kosnik.
- May induce the 750 GeV diphoton decay [Bauer et al. 2015], [Murphy 2015].
- Couple quark singlets (case 1) or doublets (case 2).
- Constrained by collider experiments and $\mu \to e\gamma$, μe conversion in nuclei and K physics ...

Scalar LQ	Vector LQ
$S_1(3, 1, -1/3)$	$ ilde{V}_1(3,1,-5/3)$
$S_2(3, 2, -7/6)$	$V_2(3, 2, -5/6)$
$S_3(3, 3, -1/3)$	$ ilde{V}_{2}(3,2,1/6)$
	$V_3(3, 3, -2/3)$

 $(SU(3)_C,SU(2)_L,Y)$

Leptoquark models and flavor patterns

- May generate LNU in R(K) and $R(D^*)$ [Alonso et al. 2015], [Bauer et al. 2015], [Fajfer et al. 2015], talk by Nejc Kosnik.
- May induce the 750 GeV diphoton decay [Bauer et al. 2015], [Murphy 2015].
- Couple quark singlets (case 1) or doublets (case 2).
- Constrained by collider experiments and $\mu \to e \gamma, \; \mu e$ conversion in nuclei and K physics ...

Couplings via flavor patterns inspired by Frogatt-Nielsen U(1) (quarks, rows) and A_4 (leptons, columns) symmetries, e.g. [de Medeiros Varzielas et al. 2015]

$$\lambda_{i,ii,iii} \sim \begin{pmatrix} \rho_d \kappa & \rho_d & \rho_d \\ \rho \kappa & \rho & \rho \\ \kappa & 1 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & * & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{pmatrix}, \quad \begin{pmatrix} * & 0 & 0 \\ 0 & * & 0 \\ 0 & * & 0 \end{pmatrix}$$

Leptoquark models and branching ratios

	$\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)$	$\mathcal{B}(D^0 \to \mu^+ \mu^-)$	
ii.1)	$\lesssim 7 \cdot 10^{-8} \; (2 \cdot 10^{-8})$	$\lesssim 3 \cdot 10^{-9}$	
iii.1)	SM-like	SM-like	
exp.	$< 7.3 \cdot 10^{-8} (2.6 \cdot 10^{-8})$	$< 6.2 \cdot 10^{-9}$ [LHCb 2013]	

Full q^2 -bin (high q^2 -bin) for two classes of leptoquark couplings.

	$\mathcal{B}(D^+ \to \pi^+ e^\pm \mu^\mp)$	$\mathcal{B}(D^0 \to \mu^{\pm} e^{\mp})$	$\mathcal{B}(D^+ \to \pi^+ \nu \bar{\nu})$
ii.1)	0	0	$\lesssim 8 \cdot 10^{-8}$
iii.1)	$\lesssim 2 \cdot 10^{-6}$	$\lesssim 4\cdot 10^{-8}$	$\lesssim 2 \cdot 10^{-6}$
exp.	$\lesssim 3 \cdot 10^{-6}$	$< 1.3\cdot 10^{-8}$	$\sim 10^{-5}$

The $c \rightarrow u e^+ e^-$ branching ratios are SM-like, thus LNU in charm decays may be generated.

Leptoquark models and CP asymmetries

Normalized to shown bins for case ii.2) around ϕ (left plot) and at high q^2 (right plot). From yellow (upper curves above ϕ) to red (lower curves above ϕ) each bunch represents $\delta_{\phi} = \pi/2, \pi, 0, 3/2\pi$.

Probes $Q_9 = (\bar{u}_L \gamma_\mu c_L)(\bar{l}\gamma^\mu l)$ independent of strong phases around ϕ and small C_9 as linked to K/B physics at high q^2 .

BSM opportunities with (semi)leptonic rare charm decays via

- $\mathcal{B}(D^+ \to \pi^+ \mu^+ \mu^-)$ above the resonances.
- Angular observables and CP asymmetries.
- LFV and dineutrino decays.

Leptoquark models link charm and K/B physics (LNU).

BSM physics depend on flavor patterns and vice versa.