

Heavy Flavor Physics from CMS & ATLAS

Sanjay Kumar Swain NISER, India March 13th, 2016

51st Rencontres de Moriond EW 2016

12-19 mars 2016 Europe/Paris timezone

Introduction

- Flavor production and study of its properties is one of the most interesting areas among the particle physics community.
- There are many unsolved questions in this sector (listing only few):
 - -> What are the principles for the observed pattern of fermion mass and mixing angles ?
 - -> Are there any new sources of flavor symmetry breaking apart from SM Yukawa couplings at TeV scale ?
 - -> Are there new sources of CP violation to explain the observed matter-antimatter asymmetry of universe ?
- LHC era is very important pin down some of the flavor questions.

It allows us to search for NP : (two ways for NP search)

- Produce heavy particles beyond SM. The production cross-section of those particles are usually small.
- Measure the observables/parameters of SM processes (specifically rare decay modes). Any significant deviation from SM prediction will be hint of NP.

Why we can do better at higher energy?

From 8TeV -> 13TeV and beyond (LHC to HL-LHC)

HL-LHC operation beyond LS3 (2025+)

New low-6 beam configuration and crab-cavities to optimize the bunch overlap at the interaction region. Level the instantaneous luminosity at 5×10^{34} from a potential peak value of 2×10^{35} . Deliver ~250 fb⁻¹ per year for 10 years of operation, accumulate up to 3000 fb⁻¹.

Event with di-muon from CMS @13TeV

Physics with di-muons from CMS @13TeV

CMS DP-2015/018

B⁺ production cross section @13TeV from CMS

CMS DPAS-BPH-15-004

- Provides important information to understand particle interactions.
- B⁺ differential production cross section as function of B transverse momentum and rapidity
- Uses exclusive decay mode B⁺ -> J/ Ψ K⁺ (J/ Ψ -> $\mu^+\mu^-$) [pp -> B⁺X -> J/ Ψ K⁺ X]
- Both muons must be within $|\eta| < 1.6$ or one of the muons must have $P_{\tau} > 10$ GeV.
- J/ Ψ candidates must have P_T > 8GeV and minimum χ^2 probability for vertex fit.
- Combined with charged track (considered to be kaon) with P_T >1GeV
- The cut in decay length significance in transverse plane (distance between secondary vertex and beam spot in transverse plane divided by its uncertainty)
- The signal is obtained by extended maximum likelihood fit to the B⁺ invariant mass distribution in bins of B⁺ P_T and $|\eta|$.
- The differential cross-section is calculated to be

$$\frac{d\sigma(pp \to B^+X)}{dp_T^B} = \frac{n_{sig}(p_T^B)}{2\,A \cdot \epsilon(p_T^B)\,\mathcal{BL}\,\Delta p_T^B} \,, \quad \frac{d\sigma(pp \to B^+X)}{dy^B} = \frac{n_{sig}(|y^B|)}{2\,A \cdot \epsilon(|y^B|)\,\mathcal{BL}\,\Delta y^B}$$

• Result shown is based on 50.8 pb⁻¹ data collected at 13TeV

B⁺ production cross section @13TeV from CMS

B⁺ production cross section from CMS & ATLAS

B⁺ mass measurement @13TeV from ATLAS

- Tested the performance of the ATLAS detector by looking at B⁺ mass in different $|\eta|$
- B⁺ is reconstructed with J/ Ψ ($\mu^+\mu^-$)K⁺ mode
- Two muon with P_T >4GeV is choose for J/ Ψ .
- Another track (a kaon candidate) chosen with P_T> 3GeV and $|\eta|$ < 2.5
- An unbinned maximum likelihood fit on B-mass is done to get the signal.
- Uses 3.2 fb⁻¹ data collected at 13TeV

ATLAS-CONF-2015-064

B⁺ mass measurement @13TeV from ATLAS

J/ψ production @13TeV from ATLAS

- Heavy quarkonium states are good testing ground for perturbative and non-pertubative regime of QCD
- First stage is short distance production of heavy quark pair (described perturbatively)
- Second stage is non-perturbative hadronization of heavy quark pair into quarkonium state, such as J/Ψ

$$pp \xrightarrow{Production} Q\overline{Q} \xrightarrow{Hadronisation} J/\psi$$

• J/ Ψ can be produced directly from hard collisions of partons in proton-proton machine (prompt J/ Ψ) or via decay of b-flavor hadrons (non-prompt J/ Ψ)

Here the fraction of non-prompt J/ Ψ is obtained by: $f_b^{J/\psi} \equiv \frac{pp \to b + X \to J/\psi + X'}{pp \xrightarrow{\text{Inclusive}} J/\psi + X'} = \frac{N_{J/\psi}^{\text{NP}}}{N_{J/\psi}^{\text{NP}} + N_{J/\psi}^{\text{P}}}$

- The two can be differentiated by different decay times of reconstructed J/ Ψ
- The yield is obtained by unbinned maximum likelihood fit to dimuon mass and decay time

Pseudo-lifetime:
$$au = L_{xy} m_{J/\psi}^{\text{PDG}} / p_{\text{T}}$$
 $L_{xy} \equiv \vec{L} \cdot \vec{p}_{\text{T}} / p_{\text{T}}$

- J/ ψ is particular interesting for detector calibration due to large BF

J/ψ production @13TeV from ATLAS (cont.)

- The non-prompt fraction increases from 0.25 at 8GeV J/ Ψ P_T to 0.65 at 40 GeV
- Consistent with previous results
- No variation in different pseudo-rapidity regions.

Facts about $B_s \rightarrow \mu^+ \mu^-$

- It's a flavor changing neutral current (FCNC) process. Tree level contribution is forbidden in Standard Model.
- Only occurs via loop diagram as shown below.

- The process is helicity suppressed by factor (m_µ/m_B)² (forces one of the muons to have wrong helicity direction)
- H^+ B_s μ^-
- $B_d \rightarrow \mu^+ \mu^-$ is further suppressed compared to $B_s \rightarrow \mu^+ \mu^-$ as $|V_{td}| < |V_{ts}|$
- Sensitive to pseudo-scalar and scalar couplings
- Any New Physics could change the branching fraction (extra amplitudes will contribute to the decay process).
- Probably the cleanest rare decay both experimentally and theoretically.

CMS results for $B \rightarrow \mu^+ \mu^-$

PRL 111 (2013) 101804

<u>CMS & LHCb combination for $B \rightarrow \mu^+\mu^-$ </u>

andidates per 40 MeV/c²:

60

50

30

Weighted 10

CMS and LHCb (LHC run I)

Nature 522, 68-72

June (2015)

🔶 Data

 $B_s^0 \rightarrow \mu^+ \mu^-$

 $B^0 \rightarrow \mu^+ \mu^-$

Peaking background

Signal and background

Combinatorial background

Semi-leptonic background

- Both CMS & LHCb data are simultaneously fitted with BFs as common free parameters
- An un-binned maximum likelihood fit to the di-muon invariant mass is done over all BDT bins (12 bins for CMS and 8 bins for LHCb)

Observed branching fraction: BR(B⁰_s) = $(2.8^{+0.7}_{-0.60}) \times 10^{-9} (35\% \text{ syst}) 6.2\sigma \text{ observed}$

BR(B⁰) = $(3.9^{+1.6}_{-1.4}) \times 10^{-10} (18\% \text{ syst}) 3.0\sigma \text{ evidence}$

ATLAS result on B_s \rightarrow \mu^+ \mu^-

For B⁰:

- BR(B⁰ -> $\mu^+\mu^-$) < 4.2 × 10⁻⁹ at 95% CL (from CL_s)
- The limit is above the SM prediction
- and reaches the central value of the CMS & LHCb combination $BR(B^0)_{CMS\&LHCB} = (3.9^{+1.6}_{-1.4}) \times 10^{-10}$.

The compatibility with the SM, for the simultaneous fit, is 2.0σ .

<u>NP constraints with $B \rightarrow \mu^+ \mu^-$ </u>

• NP can enter through the Wilson coefficient (C_i's) of operator in effective Hamiltonian

$$\mathcal{H}_{ ext{eff}} = -rac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* rac{e^2}{16\pi^2} \sum_i (C_i O_i + C_i' O_i') + ext{h.c.}$$

$$O_{S}^{(\prime)} = \frac{m_{b}}{m_{B_{s}}} (\bar{s}P_{R(L)}b)(\bar{\ell}\ell)$$
$$O_{P}^{(\prime)} = \frac{m_{b}}{m_{B_{s}}} (\bar{s}P_{R(L)}b)(\bar{\ell}\gamma_{5}\ell)$$

- The BF for $B \rightarrow \mu^+ \mu^-$ can be enhanced in the presence of NP in the scalar or pseudoscalar operators, which can lift the helicity suppression.
- Can create some correlation among different decay modes such as $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$
- A large part of parameter space of SUSY models with large tan β are ruled out.
- However, SM4 or RSc or SUSY models with low tanβ is to be probed now.
- For example, SM4 is ruled out if enhancement in both $B_s \rightarrow \mu^+ \mu^-$ and $B_d \rightarrow \mu^+ \mu^-$ is observed.

<u>NP constraints with $B \rightarrow \mu^+ \mu^-$ </u>

-1.0

S. Stone

arxiv: 1212.6374

-0.5

0.0

φ_

MSSM-SU(5)

19

1.0

0.5

 Plot on the right shows the allowed region by B_s->μ⁺μ⁻ BF measurement and the mixing induced CP asymmetry (φ_s)

CMS future prediction

- Expectation assuming SM branching fraction and planned detector upgrade.
- Large pile up will affect detection efficiency, tightening selection criteria, reduce background, better determination of peaking background.

Measurement of B->K^{*0}μ⁺μ⁻ at CMS

B->K* $^{0}\mu^{+}\mu^{-}$ at CMS (cont.)

Summary

- The 13TeV results from CMS and ATLAS are consistent with theory prediction.
- CMS and LHCb reported a first observation of $B_s \rightarrow \mu^+ \mu^-$ (6.2 σ from combined data). The measured BF is compatible with SM prediction (within 1.2 σ)
- Combined result reported first evidence of $B^0 \rightarrow \mu^+ \mu^-$. The measurement is compatible with SM within 2.2 σ
- The result started to constrain the NP parameter spaces.
- However, we look forward for new (13 TeV & 14 TeV) datasets to give us $B^0 \rightarrow \mu^+ \mu^-$ observation soon.
- B->K^{*0} $\mu^+\mu^-$ results are consistent with theory prediction as well as other experiments.
- The next few years would be very crucial for LHC to look for something beyond SM.

B-physics results from CMS & ATLAS

$$\sigma \left(b\overline{b} \right)^{14 \text{ TeV}} = 2 \times \sigma \left(b\overline{b} \right)^{7 \text{ TeV}}$$

	LHC era		HL-LHC era		
	2010-2012	2015-2017	2019-2021	2024-2026	2028-2030+
ATLAS & CMS	25 fb ⁻¹	100 fb ⁻¹	300 fb ⁻¹	\rightarrow	3000 fb ⁻¹
LHCb	3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹
Belle II	-	0.5 ab ⁻¹	25 ab ⁻¹	50 ab ⁻¹	-