Precision Measurements of Electroweak Parameters with Z Bosons at the Tevatron

 $(\sin^2\theta_W^{\text{eff}}, \sin^2\theta_W^{\text{on-shell}}, M_W^{\text{indiret}})$

Arie Bodek, University of Rochester,

For the CDF and D0 Collaboration

Rencontres de Moriond <u>EW Interactions and Unified Theories</u>

La Thuile, Aosta valley, Italy: March 12th - 19th, 2016 20 min

Dilepton forward backward asymmetry $\rightarrow sin^2 \theta_{eff}^{leptonic}$

1. DØ e+e- (9.7 fb-1) Phys. Rev. Lett. 115, 041801 (2015)

measure $sin^2 \theta_{eff}$ (M_z)

2. CDF $\mu^+\mu^-$ (9.2 fb⁻¹) Phys. Rev. D89, 072005(2014: CDF e⁺e⁻ + $\mu^+\mu$ (9.4 fb⁻¹) submitted to Phys Rev D 2016

measure $\sin^2\theta_{\text{eff}}$ leptonic $(M_z) \& \sin^2\theta_W^{\text{on-shell}}, M_w^{\text{indirect}}$

3 A. Bodek et al <u>arXiv:1507.02470</u> to be published in EPJC

New method: PDF Constraints from Drell-Yan AFB

Direct measurement of W mass LEP & Tevatron 3

http://pdg.lbl.gov/2014/reviews/rpp2014-rev-w-mass.pdf

Indirect Measurement of W mass

 $M_{\rm W}\,$ also can be determined indirectly via the relation

$\sin^2\theta_w^{\text{on-shell}} = 1 - M_w^2 / M_z^2$

 ± 0.00040 error in sin² θ w is equiv. to ± 20 MeV error in Mw (indirect)

Both $sin^2\theta w^{on-shell}$ and $sin^2\theta _{eff}^{leptonic}$ (M_z) can be extracted from Drell-Yan forward-backward asymmetry (Afb) if we include EW radiative corrections. $M_w^{indirect}$ can be extracted from $sin^2\theta w^{on-shell}$

- If the SM is correct, then both direct and indirect measurements of M_w should agree. Deviations may imply the possibility of new physics.
- Similarly different measurements of $\sin^2\theta_{eff}^{leptonic}$ (M_z) should also agree and deviations may imply new physics.

As shown in this talk, for the full Run II 9.4 fb⁻¹ Tevatron data, the uncertainties in direct and indirect measurements of M_w are now comparable.

$\sin^2 \theta_{eff}^{lept} \simeq 1.037 \cdot \sin^2 \theta_w$ [ZFITTER $\kappa_s(\sin^2 \theta_w, M_z)$ form factor]

(above relation is approximate) one needs to include complex EW radiative correction form factors in the theory predictions for A_{FB} to extract the on-shell $Sin^2\theta_w = 1 - M_w^2 / M_z^2$

Difference between u and d quarks

Measuring $\sin^2\theta_W$ at the Tevatron

8

Change in Afb(M) with respect to Afb with $sin^2\theta_W = 0.2244$

DO e⁺e⁻ 9.7 fb⁻¹ sin² θ w^{eff} analysis - I

- Require two electrons with p_T>25 GeV
 - Tight track match requirement
 - CC ($|\eta| < 1.1$) and EC (1.5< $|\eta| < 3.2$)
- Use 75<M_{ee}<115 GeV \rightarrow 560k events
- New Lepton energy calibration similar to that used in CDF and CMS
 - Apply scale factor as a function of L_{inst} first and then η

90

M_{ee} peak scaled to LEP value in each bin

CC-CC events

- CC-EC events

EC-EC events

Detector 1

ypeak N 95

93

92

91

90

89

9

DO e⁺e⁻ 9.7 fb⁻¹ sin² θ w^{eff} analysis - II

- Smearing of electron energy
- Efficiency corrections in $p_T(e)$, $\eta(e)$
- L_{inst} and z_{PV} reweighting to match data
- Higher order effects: NNLO Z p_T and y to match RESBOS
- Produce 2D templates of M_{ee} and cosθ* by reweighing default MC (sin²θ_{eff}=0.232) as a function of sin²θ_{eff}
- Extract $\sin^2\theta_{eff}$ by fitting raw A_{FB} to templates with different $\sin^2\theta_{eff}$ values
- No unfolding: MC is carefully corrected to describe the data

 $sin^2\theta_{efff}$ = 0.23138 ± 0.00043(stat) ± 0.00008(syst) ± 0.00017(NNPDF2.3 PDFs) (no EW radiative corrections)

DO e⁺e⁻ 9.7 fb⁻¹ sin² θ w^{eff} analysis - III

LEP and SLD Average

 0.23153 ± 0.00016

An approximate way to correct for the flavor dependence of $\sin^2 \theta_{\text{eff}}$ from EW radiative corrections is used by the D0 collaboration. This is done by making the following corrections (proposed by Baur and collaborators [8]):

11

CDF $\mu^+\mu^-$ & e^+e^- 9.7 fb^{-1} sin^2\theta_W analyses

Indirect measurement of W mass:

1st innovation: $sin^2\theta_W$ is constant while $sin^2\theta_{eff} = (M_{ee}, flavor)$ is not. Implement Full ZFITTER EW radiative corrections, Enhanced Born Approximation (EBA), include full complex form factors implemented in private versions of RESBOS, POWHEG, and LO. *Ref Phys. Rev. D* 88, 072002 (2013) Appendix A'.

2nd innovation: Precise lepton momentum/energy scale for muons and electrons using a new method- (will also reduce scale error for M_w measurement) Ref: A. Bodek et al. Euro. Phys. J. C72, 2194 (2012)

3rd innovation: Event weighting method for A_{FB} analyses (systematic errors in acceptance and efficiencies cancel)-*Ref. A. Bodek. Euro. Phys. J. C67, 321 (2010)*

4th innovation: Use Drell-Yan forward-backward asymmetry to constrain parton distribution functions - (will also reduce PDF errors for M_w measurement) Ref A. Bodek et al <u>arXiv:1507.02470v2</u> (2015)

1. Implement ZFITTER EBA EW radiative corrections $\mathbf{13}$

 $sin^2\theta_w$ (on-shell) is a constant while $sin^2\theta_{eff}$ (M_{ee}, flavor) is not.

Full ZFITTER EW radiative corrections, Enhanced Born Approximation (EBA), include full complex form factors implemented private versions of RESBOS, POWHEG, and LO) Phys. Rev. D 88, 072002 (2013) Appendix A'

 $g_V^f \gamma_\mu + g_A^f \gamma_\mu \gamma_5$. The Born-level couplings are $g_V^f = T_3^f - 2Q_f \sin^2 \theta_W$ $g_A^f = T_3^f$,

They are modified by ZFITTER 6.43 form factors (which are complex)

T₃ and $\sin^2\theta_w \rightarrow \text{effective T}_3$ and $\sin^2\theta_w$: 1-4% multiplicative form factors

On-mass shell scheme: $\sin^2\theta_w \equiv 1 - M_w^2/M_z^2$ to all orders Accounts for $\sin^2\theta_{eff}$ dependence on quark flavor and dilepton mass \rightarrow get $\sin^2\theta_{eff}$ leptonic (Mz) using Afb over a range of dilepton mass

2. Precise Energy/Momentum Scale corrections 14

New technique used for both $\mu^+\mu^-$ and e^+e^- for both data and hit level MC. (Ref A. Bodek et al. Euro. Phys. J. C72, 2194 (2012))

Step 1 : Remove the correlations between the scale for the two leptons by getting an initial calibration using Z events and requiring that the mean <1/P_T> of each lepton in bins of η , Φ and charge be correct.

Step2: The Z mass used as a calibration. The Z mass as a function of η, Φ , (and charge for $\mu^+\mu^-$) of each lepton be correct

- **Reference for muons:** Expected Z mass (post FSR) smeared by resolution (with acceptance cuts).
- **Reference for electrons:** Expected Z mass (post FSR + clustered FSR photons), smeared by resolution (with acceptance cuts).

3. Use event weighting Method

Event weighting method for A_{FB} analyses Ref. A. Bodek, Euro. Phys. J. C67, 321 (2010)

 $dN/d\cos\theta = 1 + \cos^2\theta + A_0(M, P_T) (1 - 3\cos^2\theta)/2 + A_4(M) \cos\theta$

Angular event weighting is equivalent to extraction of $A_4(M)$ in bins of $\cos \theta$, and averaging the results.

Events at large $\cos\theta$ provide better determination of A4, so they are weighted more than events at small $\cos\theta$.

For each $\cos\theta$ acceptance and efficiencies cancel to first order and the statistical errors are 20% smaller. Then extract $A_{fb} = (3/8)A_4$

Event weighting does not correct for resolution smearing and final state radiation, which are included later in the unfolding.

The 4th innovation: Using Drell-Yan forward-backward asymmetry to constrain parton distribution functions is discussed at the end of the talk. (Ref A. Bodek et al <u>arXiv:1507.02470v2</u> (2015))

Why use event weighting Method

The error in Afb is reduced if we have more acceptance at large $cos\theta$, Standard Afb method requires precise knowledge of acceptance and efficiencies. Measure $A_4 \rightarrow A_{FB}$

CDF e⁺e⁻: unfolding for Resolution and FSR 17

CDF e⁺e: $sin^2\theta_W$ extraction using templates 18

Comparisons of A_{fb} Measurement to Calculations

- Comparison χ^2 : $\Sigma_{_{M}} \Delta A_{_{fb}}(M)^{\sim} \cdot E \cdot \Delta A_{_{fb}}(M)$
 - Measurement: Fully corrected A_{fb}(M)
 - Calculated templates: $A_{fb}(M, sin^2\theta_w)$ for 16 values of $sin^2\theta_w$
 - E: Measurement error matrix

Example $sin^2\theta_w$ template scan using data

- Afb template: Powheg-Box NLO + default PDF of NNPDF 3.0 (261000)
- Fit of scan points to a parabola: χ^2_{min} + $(\sin^2\theta_w \sin^2\theta_{wmin})^2/\sigma_{min}^2$

This analysis is repeated with1. POWEG ,2. RESBPOS3. Tree-Level LO

For the POWHEG analysis, the extraction is repeated 100 times for all 100 NNPDF3.0 replicas to get PDF error.

$CDF \mu^+\mu^- \& e^+e^-$: $sin^2\theta_W$ PDF errors

- NNPDF 3.0 ensemble measurement of sin²0_w
 - \rightarrow Powheg-Box NLO and Tree (LO) Afb templates calculated with NNPDF
 - → Example:

Each entry is the $sin^2\theta_w$ fit value for an ensemble PDF

CDF Run II Preliminary:

15 Mass bins. This plot indicates that the NNPDF3.0 PDFs are consistent with the CDF Afb (M) data

Tevatron ee & $\mu\mu$ 9 fb⁻¹: $sin^2\theta_{eff}(M_z)$ 20

CDF ee & $\mu\mu$ 9 fb⁻¹ Indirect M_w measurement

$$\begin{split} \sin^2\theta_{\rm eff}^{\rm lept} &= 0.23221 \pm 0.00046\\ \text{On-shell } \sin^2\theta_W &= 0.22400 \pm 0.00045\\ M_W({\rm indirect}) &= 80.328 \pm 0.024 \; {\rm GeV}/c^2\,. \end{split}$$

CDF Mw 24 MeV Indirect Mw error is similar to CDF 19 MeV direct Mw error

http://pdg.lbl.gov/2014/reviews/ rpp2014-rev-w-mass.pdf

CDF ee & $\mu\mu$ 9 fb⁻¹ Indirect M_w measurement 22

http://pdg.lbl.gov/2014/reviews/rpp2014-rev-standard-model.pdf K.A. Olive et al. (PDG), Chin. Phys. C38, 090001 (2014) (<u>http://pdg.lbl.gov</u>)

An Error of +- 0.00040 in $sin^2\theta w$ is equiv. to +-20 MeV error in Mw.

Currently the Tevatron direct (L= 2.2 fb^{-1}) and indirect (L= 9.4 fb^{-1}) measurements of Mw have similar errors. (~ 20 MeV per experiment)

Tevatron Run II Legacy measurements of $\sin^2\theta w$ and M_w^{indirect} are in good agreement with SM predictions from M_H and M_T . (no hint of super-symmetry). $A_{FB}(M)$ data can also be used to put additional constraints on PDFs. These constraints will help reduce PDF errors in the ongoing Tevatron Run II Legacy (L=9.4 fb⁻¹) direct measurement of Mw.

Extra slides:

Moving on to the LHC: With these new techniques, as the statistical errors in Afb become smaller, there is a corresponding reduction in both the statistical errors and PDF errors in the measurements of of $sin^2\theta w$ and $M_w^{indirect}$.

With current 8 TeV data, LHC can match CDF errors. With 13 and 14 TeV LHC data, the errors can be reduced by a factor of 2.

Replica PDFs

New measurements can be incorporated into the ensemble without refits

 Ensemble PDFs are reweighted

 $exp(-\chi_k^2/2)$

 $\sum_{l=1}^{N} \exp(-\chi_l^2/2)$

 χ^2_{L} : between new measurement and prediction with ensemble PDF k

This is clear for new data (e.g. new W asymmetry data)

However, How can we get both sin² θ_{eff}^{lept} AND constrain PDFs from the same Afb data ?

- G. Watt and R. S. Thorne (MRST), JHEP 08:052 (2012) (arXiv:1205.4024)
- 19. https://mstwpdf.hepforge.org/random/
- Walter T. Giele, and Stephane Keller, Phys.Rev. D58 (1998) 094023 (arXiv:hep-ph/9803393).
- Nobuo Sato, J. F. Owens, Harrison Prosper, Phys. Rev. D 89, 114020 (2014) (arXiv:1310.1089)
- 22. Hannu Paukkunen, Pia Zurita, "PDF reweighting in the Hessian matrix approach", http://arxiv.org/abs/1402.6623
- Richard D. Ball, Valerio Bertone, Francesco Cerutti, Luigi Del Debbio, Stefano Forte, Alberto Guffanti, Jose I. Latorre, Juan Rojo, Maria Ubiali, Nucl.Phys.B849, 112 (2011) arXiv:1012.0836.

Constraining PDF replicas

Fig. 3. Tevatron: (a) The difference between $A_{FB}(M)$ for 10 NNPDF3.0 (NNLO) replicas and $A_{FB}(M)$ calculated for the default NNPDF3.0 (NNLO) (261000). Much of the difference originates form the different dilution factors for each of the NNPDF replicas. Here $\sin^2 \theta_W$ is fixed at a value of 0.2244. (b) The difference between $A_{FB}(M)$ for different values of $\sin^2 \theta_W$ ranging from 0.2220 (shown at the top in red) to 0.2265 (shown on the bottom in blue), and $A_{FB}(M)$ for $\sin^2 \theta_W = 0.2244$. Here $A_{FB}(M)$ is calculated with the default NNPDF3.0 (NNLO).

For details see:

<u>A. Bodek. J. Han A. Khukhunaishvili</u>, <u>W. Sakumoto</u>:" Using Drell-Yan forwardbackward asymmetry to constrain parton distribution functions" arXiv:1507.02470

26

Constraining PDFs & reducing PDF errors 27

 χ^2_{min} versus sin² θ_w for each ensemble PDF:

100 NNPDF 3.0 (NNLO) replicas

CDF e+e Afb Data is compatible with NNPDF3.0 PDFs

In addition "Ensemble PDF can be constrained by reweighting"

Technique can be used with any PDF set.

Constraining PDF replicas at the LHC 28

LHC $A_{\mbox{\scriptsize FB}}$ data can also be used to constrain PDFs

See: A. Bodek arXiv:1507.02470

LHC CMS like	input
Pseudo-Experiment	POWHEG
LHC 15 fb^{-1} 8 TeV	Default
$6.7M \ \mu^+\mu^-$	NNPDF 3.0 (NLO)
reconstructed events	(261000)
$\sin^2 \theta_{eff}$ input	0.23120
statistical error	± 0.00050
$\Delta \sin^2 \theta_{eff}$	
CT10 PDF error	± 0.00080
Analysis replicas	100
NNPDF set	NNPDF 3.0 (NLO)
Templates	POWHEG
Average method	$N_{eff} = 100$
extracted $\sin^2 \theta_{eff}$	0.23121
Standard PDF error RMS	± 0.00051
(uncertainty in PDF error)	(0.00004)
χ^2_{Afb} weighting	$N_{eff} = 37$
extracted $\sin^2 \theta_W$	0.23119
χ^2_{Afb} weighted PDF error RMS	± 0.00029
(uncertainty in PDF error)	(0.00003)
$\chi^2_{Afb} + \chi^2_{Wsym}$ weighting	$N_{eff} = 15$
extracted $\sin^2 \theta_W$	0.23122
Weighted PDF error RMS	± 0.00026
(uncertainty in PDF error)	(0.00005)

ATLAS $(e+\mu) 4.5 \text{ fb}^{-1}$ 0.23080 ±0.00050(stat) ± 0.00060(syst) ± 0.00090(pdf) \rightarrow need to reduce

With the existing 8 TeV $\mu\mu$ Afb sample from one LHC experiment the PDF errors on $\sin^2\theta_{efff}$ can be reduced From the current CT10 PDF error of +- 0.00090 to to +-0.00026.

The constrained PDFs can also be used to reduce PDF errors on the direct measurement of $M_{\rm w}$ at the LHC

The PDF errors can be **further reduced** with larger statistical samples at 13 TeV.

LHC 8 TeV pseudo data

NNPDF3.0 pseudo data

Fig. 9. Scatter plots of χ^2_{Afb} values versus $\sin^2 \theta_{eff}$ for one of the 64 LHC pseudo experiments. Here templates are gener-

A. Bodek arXiv:1507.02470

Fig. 10. The average of the results from the analyses of the 64 LHC pseudo experiments. Each pseudo experiment is analyzed

29

LHC run II

A. Bodek arXiv:1507.02470

CMS like detector	2016	2017-18
	sample	sample
Energy	8 TeV	13-14 TeV
Number of	$8.2M \ \mu^+\mu^-$	$120M \ \mu^{+}\mu^{-}$
reconstructed events	$6.8M e^+e^-$	-
$\Delta \sin^2 \theta_W$		
Statistical error	± 0.00034	± 0.00011
Weighted PDF error	± 0.00022	± 0.00014
(Stat+PDF) error	± 0.00040	± 0.00018
$\Delta M_W^{indirect}$	MeV	MeV
Statistical error	± 17	± 5
weighted PDF error	±11	± 7
(Stat+PDF) error	± 20	± 9