

Neutrinoless double beta decay results from CUORE-0 and status for CUORE experiment

Paolo Gorla Laboratori Nazionali del Gran Sasso

The CUORE challenge

Operate a huge bolometric array, in an extremely low radioactivity and low vibrations environment, to detect 0vDBD of ¹³⁰Te

- Closely packed array of 988 TeO₂ crystals (19 towers of 52 crystals 5×5×5 cm³, 0.75 kg each)
- Mass of TeO₂: 741 kg (~206 kg of ¹³⁰Te)
- Energy resolution: 5 keV @ 2615 keV [FWHM] ($Q_{\beta\beta}=2527$ keV)
- Stringent radiopurity controls on materials and assembly
- Operating temperature: ~ 10 mK
- Mass to be cooled < 4 K: ~ 15 tons (lead, copper and TeO₂)
- Background aim: 10⁻² c/keV/kg/year
- T_{1/2} sensitivity in 5 years (90% C.L.): ~ 9.5 x 10²⁵ yr

4K (IVC) - plate

_ Mixing Chamber

Detector

The CUORE challenge

Operate a huge bolometric array, in an extremely low radioactivity and low vibrations environment, to detect 0vDBD of ¹³⁰Te

- Closely packed array of 988 TeO₂ crystals (19 towers of 52 crystals 5×5×5 cm³, 0.75 kg each)
- Mass of TeO₂: 741 kg (~206 kg of ¹³⁰Te)
- Energy resolution: 5 keV @ 2615 keV [FWHM] (Q_{ββ}=2527 keV)
- Stringent radiopurity controls on materials and assembly
- Operating temperature: ~ 10 mK
- Mass to be cooled < 4 K: ~ 15 tons (lead, copper and TeO₂)
- Background aim: 10⁻² c/keV/kg/year
- $T_{1/2}$ sensitivity in 5 years (90% C.L.): ~ 9.5 x 10²⁵ yr
 - CUORE-0 results

4K (IVC) - plate

_ Mixing Chamber

Detector

The CUORE challenge

Operate a huge bolometric array, in an extremely low radioactivity and low vibrations environment, to detect 0vDBD of ¹³⁰Te

- Closely packed array of 988 TeO₂ crystals (19 towers of 52 crystals 5×5×5 cm³, 0.75 kg each)
- Mass of TeO2: 741 kg (~206 kg of ¹³⁰Te)
- Energy resolution: 5 keV @ 2615 keV [FWHM] (Q_{ββ}=2527 keV)
- Stringent radiopurity controls on materials and assembly
- Operating temperature: ~ 10 mK
- Mass to be cooled < 4 K: ~ 15 tons (lead, copper and TeO₂)
- Background aim: 10⁻² c/keV/kg/year
- $T_{1/2}$ sensitivity in 5 years (90% C.L.): ~ 9.5 x 10²⁵ yr
 - CUORE-0 results
 - CUORE commissioning

Rencontres de Moriond EW 2016

4K (IVC) - plate

_ Mixing Chamber

Detector

Thermal Detectors

- low heat capacity @ T_{work}
- excellent energy resolution (~1 ‰ FWHM) huge number of energy carriers (phonons)
- equal detector response for different particles
- slowness (suitable for rare event searches)

CUORE @ Gran Sasso

- ~3800 m.w.e. deep
- μs: ~3x10⁻⁸/(s cm²)
- γs: ~0.73/(s cm²)
- neutrons: 4x10⁻⁶ n/(s cm²)

The CUORE program

CUORICINO (2003-2008)

COMPLETED

Rencontres de Moriond EW 2016

CUORE-0 (2012- 2015)

COMPLETED

CUORE 2016 Ready for detector installation

Cuoricino background

Cuoricino final energy spectrum

Background @ 0vDBD Q-value:

	²⁰⁸ Tl	$\beta\beta(0\nu)$ region	3-4 MeV region
tion	1	$10\pm5\%$	$20\pm10\%$
on	$\sim \! 15\%$	$50\pm20\%$	$80 \pm 10\%$
elds	$\sim\!\!85\%$	$30\pm10\%$	

Paolo Gorla

From CUORICINO to CUORE

- Strict material selection \bullet
- New lighter detector design structure
- Reduced overall copper surfaces by a factor ~2
- New surface cleaning technique
- Strict production protocols for TeO₂ surface contamination \bullet
- Minimization of Rn exposure (N₂ glove box assembly) \bullet

-

CUORE-0

CUORE-0 was the first tower produced out of the CUORE assembly line. 52 TeO₂ 5x5x5 cm³ crystals (\sim 750 g each)

- 13 floors of 4 crystals each
- total detector mass: 39 kg TeO₂ (10.9 kg of ¹³⁰Te)

Cuoricino cryostat.

- **Proof of concept** of CUORE detector in all stages
- Test and debug of the CUORE tower assembly line
- Test of the CUORE **DAQ** and analysis framework
- Check of the radioactive **background reduction**
- Sensitive 0vDBD experiment

CUORE-0 took data from March 2013 to September 2015 in the 25 years old

CUORE-0

- CUORE-0 was the first tower produced out of the CUORE assembly line. 52 TeO₂ 5x5x5 cm³ crystals (\sim 750 g each)
 - 13 floors of 4 crystals each
 - total detector mass: 39 kg TeO₂ (10.9 kg of ¹³⁰Te)

Cuoricino cryostat.

- **Proof of concept** of CUORE detector in all stages
- Test and debug of the CUORE tower assembly line
- Test of the CUORE **DAQ** and analysis framework
- Check of the radioactive **background reduction**
- Sensitive 0vDBD experiment

CUORE-0 took data from March 2013 to September 2015 in the 25 years old

Thermistors & Heaters coupling

Features:

- new semi-automatic system
- highly-reproducible
- fully performed under N₂ atmosphere to minimize radioactive recontamination.

CUORE-0 Assembly & Bonding

Rencontres de Moriond EW 2016

Contact less approach:

All the operations carried out in \bullet N2 atmosphere

4. Storage box

CUORE-0 ²³²Th calibration

Rencontres de Moriond EW 2016

CUORE-0 total calibration energy spectrum

Paolo Gorla

CUORE-0 calibration resolution

Physics-exposure-weighted harmonic mean

@ 2615 keV	Average FWHM [keV]	RMS of FWHM [keV]
Cuoricino	5.8	2.1
CUORE-0	4.9	2.9

Rencontres de Moriond EW 2016

Distribution of energy resolution @ 2615 keV

Paolo Gorla

CUORE-0 background

	2.7-3.9 MeV [counts/keV/kg/y]
CUORE-0	0.016 ± 0.001
Cuoricino	0.110 ± 0.001

Rencontres de Moriond EW 2016

ROI [counts/keV/kg/y]

 0.058 ± 0.004

 0.169 ± 0.006

~ factor 7 reduction in the alpha continuum region

CUORE background budget

Based on

- Cuoricino & CUORE-0 data
- HPGe, NAA and ICPMS measurements
- Montecarlo

CUORE Preliminary

Near Surfaces : TeO₂ **Near Surfaces:** Cu NOSV or PTFE **Near Bulk: TeO**₂ **Near Bulk: Cu NOSV** Cosm. Activ. : TeO₂ **Cosm Activ : Cu NOSV Near Bulk :** small parts Far Bulk: COMETA Pb top Far Bulk: **Inner Roman Pb** Far Bulk: **Steel parts** Far Bulk: Cu OFE **Environmental: muons Environmental: neutrons Environmental:** gammas

0.01

Paolo Gorla

in preparation

CUORE-0 results

Exposure: 9.8 kg·yr ¹³⁰Te

- Fit function in the energy region 2470-2570 keV, composed of 3 elements:
 - 1. Peak with calibration-derived line- shape at the Q-value of ¹³⁰Te
 - 2. Peak at 2507 keV attributed to the summed γ peak of ^{60}Co
 - 3. Flat continuum background attributed to multi scatter Compton events from $^{\rm 208}{\rm TI}$ and surface a events

CUORE-0 results

Rencontres de Moriond EW 2016

Exposure: 9.8 kg·yr ¹³⁰Te

- Fit function in the energy region 2470-2570 keV, composed of 3 elements:
 - 1. Peak with calibration-derived line- shape at the Q-value of ¹³⁰Te
 - 2. Peak at 2507 keV attributed to the summed γ peak of ⁶⁰Co
 - 3. Flat continuum background attributed to multi scatter Compton events from ²⁰⁸TI and surface a events

Best Fit Background index: 0.058 \pm 0.004 (stat.) \pm 0.002 (syst.) c keV⁻¹ kg⁻¹ yr⁻¹

Best Fit Decay Rate: $\Gamma^{0\nu\beta\beta}$ (130Te) = 0.01 ± 0.12 (stat.) ± 0.01 (syst.) × 10⁻²⁴ yr⁻¹

Paolo Gorla

Combining CUORE-0 and Cuoricino

- ¹³⁰Te exposure from Cuoricino
- The combined 90% C.L. limit is $T_{1/2} > 4.0 \times 10^{24}$ yr.

• Combination of the CUORE-0 result with the existing 19.75 kg \cdot yr of

Limit on the effective Majorana mass

The combined result gives a limit on the effective Majorana neutrino mass:

IBM-2 Phys. Rev. C 91, 034304 (2015) QRPA-TU Phys. Rev. C 87, 045501 (2013) pnQRPA Phys. Rev. C 91, 024613 (2015) ISM Nucl. Phys. A 818, 139 (2009) EDF Phys. Rev. Lett. 105, 252503 (2010)

Paolo Gorla

CUORE Towers Assembly

• Assembly of all the 19 CUORE towers completed in 2014

 Also a mockup tower for the Detector installation phase and a minitower to be used during the cryostat commissioning runs were produced

Rencontres de Moriond EW 2016

Assembly line improved after CUORE-0

CUORE-0

51/52 NTD connected

51/52 heaters connected

CUORE

988/988 NTD connected

988/988 heaters connected

Cryogenic system commissioning

Goal was to develop a cryogenic system capable to deliver stable base T (~10 mK) together with reduced vibrations (baseline RMS) at few keV) and a radio clean environment (selected material, cold Pb shields).

- All the cryostat components well thermalized at the different stages (including top Pb @ 50 mK and lateral roman Pb @ 3.5 K). No evident temperature gradient or heat leak.
- Stable base temperature -that allows CUORE bolometers operation- 6.3 mK. Base T stable for more than 70 days. Proved nominal cooling power: $3 \mu W @ 10 mK$.

 Base temperature allows to stabilise operating temperature around 10 mK for a stable detector response.

Bolometers and readout commissioning

- Encouraging detector performance (energy resolution) on 8 detectors array (Mini-Tower)
- Commissioned electronics, DAQ, temperature stabilization, and detector calibration systems

Bolometers and readout commissioning

- Encouraging detector performance (energy resolution) on 8 detectors array (Mini-Tower)
- Commissioned electronics, DAQ, temperature stabilization, and detector calibration systems

Bolometers and readout commissioning

- Encouraging detector performance (energy resolution) on 8 detectors array (Mini-Tower)
- Commissioned electronics, DAQ, temperature stabilization, and detector calibration systems

Conclusions

CUORE-0

- Achieved its energy resolution and background level objectives
- Improved 0vDBD limit for ¹³⁰Te (no 0vDBD evidence)
- Indicated CUORE sensitivity goal is within reach.

CUORE

- Assembly of the 19 CUORE towers is complete.
- CUORE cryostat assigning is completed
 - stable base temperature of ~ 6 mK
 - positive indications on noise and performances
- The cryostat is now ready to host the detector
- Detector installation foreseen in spring 2016
- CUORE cool down expected in summer 2016

The CUORE collaboration

Backup

Rencontres de Moriond EW 2016

CUORE-0 background

- $^{238}U\gamma$ lines reduced by a factor 2 (better radon control)
- 232 Th γ lines not reduced (originate from the cryostat) ullet

²³⁸U and ²³²Th a lines reduced thanks to the new detector surface treatment

Energy spectrum and calibration residuals

Rencontres de Moriond EW 2016

Two outliers:

- ⁶⁰Co, which reconstruct at 2507±0.6 keV, 2.0±0.6 keV higher than the nominal value
- ²⁰⁸TI single-escape line, which reconstruct 0.84±0.22 above the nominal value 2103.51 keV.

Cold Pb shields

2 main elements

- side & bottom: roman Pb, 6 cm thick
- top: 5 discs (6 cm thickness each) of modern lead

Roman Pb

Rencontres de Moriond EW 2016

We have to preserve the inscription needs to strictly follow the agreement horizontal cut of the top part 230 ingots were cut

Detector Installation

