

# Scalar hint from the diboson excess?

#### Aldo Deandrea Université Lyon 1 & IUF



Rencontres de Moriond La Thuile - March 17th 2016

based on hep-ph/1507.03098 with G.Cacciapaglia and M.Hashimoto



### Introduction

- Diboson searches as a test for BSM physics
- Which models, which resonances can be tested?
- Strong composite dynamics and a spin zero pseudoscalar
- WZW couplings from the fundamental dynamics: models
- Results and perspectives for Run 2

### Diboson and BSM

- search for heavy resonances around 2 TeV in both ATLAS and CMS
   2015 due to excesses in the hadronic diboson channels
- BSM models with new resonances coupling to SM gauge bosons are constrained by these searches (excess or not)
- Firm theoretical predictions?Yes in a class of models with a scalar coupling to the gauge bosons via the anomaly.

#### Diboson status 7/8/13 TeV



- few measurements @8 TeV higher than SM expectation
- see Tuesday talk by Tiesheng Dai and the one by M.Pierini today for details & updates



#### Cross-section estimates



from Les Houches working group, hep-ph/1512.04357

### Phenomenological description

• Assuming some s-channel narrow resonance:

 $\sigma_R(pp \to VV) \simeq \mathcal{N} \times BR(R \to partons) \times BR(R \to VV)$ 

- and with cross-section in the range 1-100 fb:
  - Vector-Boson-Fusion (VBF) is subdominant at 8 TeV
  - Drell-Yan (DY) production can accommodate an excess from a spin 1 vector in this range
  - Gluon fusion (GGF) is relevant for spin 0 and spin 2

### Which models, which resonances?

Strong dynamics for the EW sector:

• spin 1 (popular guess but S parameter needs extra contribution (axial-vector, ...), via Drell-Yan mainly

7

- spin 0, spin 2 from gluon fusion
- Extended SM scalar sector
- Extended gauge sector
- . . . . .

### Strong dynamics in the EW sector

Global symmetry:

G H

#### $SU(2)xU(1) \rightarrow U(1)$

SM gauge symmetry

#### "pions" h, WL, ZL

Higgs boson light as pNGB of the broken symmetry of the strong sector, parameterisation with an effective chiral Lagrangian, detailed computations in terms of the fundamental fermionic states

#### Scalars in TeV strong dynamics

- Higgs: pNGB or mixture pNGB-Composite (see 1402.0233)
- Composite scalars can be lighter than vectors (indications from lattice calculations with specific strong dynamics)
- A pseudo-scalar  $\eta$  with WZW anomaly couplings is present in the spectrum and can be in the TeV range.
  - Couplings are calculable in terms of the dynamics
  - Fermiophobic  $\eta$  is a realistic case in composite models

See hep-ph/1502.04718 for details of the scalar sector in minimal SU(4)/Sp(4) case and hep-ph/0809.0713 for the model.

## η effective couplings

$$\mathcal{L}_{\eta gg} = \kappa_g^{\eta} \frac{g_3^2}{32\pi^2} \frac{\eta_{\rm WZ}}{F_{\eta}} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma},$$

$$\mathcal{L}_{\eta WW} = \kappa_W^{\eta} \frac{g_2^2}{32\pi^2} \frac{\eta_{WZ}}{F_{\eta}} \epsilon^{\mu\nu\rho\sigma} W^i_{\mu\nu} W^i_{\rho\sigma},$$

$$\mathcal{L}_{\eta BB} = \kappa_B^{\eta} \frac{g_Y^2}{32\pi^2} \frac{\eta_{\mathrm{WZ}}}{F_{\eta}} \epsilon^{\mu\nu\rho\sigma} B_{\mu\nu} B_{\rho\sigma},$$

 $\kappa_g^{\eta}, \kappa_W^{\eta}$  and  $\kappa_B^{\eta}$  are calculable if the dynamics is specified

#### A toy vector-like model

|                      | SU(N) | $SU(3)_c$ | $SU(2)_W$ | $U(1)_Y$ |
|----------------------|-------|-----------|-----------|----------|
| $Q_L = (Q_1, Q_2)_L$ | H     | 3         | 2         | 0        |
| $Q_R = (Q_1, Q_2)_R$ | B     | 3         | 2         | 0        |
| $L_L = (L_1, L_2)_L$ |       | 1         | 2         | 0        |
| $L_R = (L_1, L_2)_R$ |       | 1         | 2         | 0        |
| $N_L$                |       | 1         | 1         | 0        |
| $N_R$                | Ē     | 1         | 1         | 0        |

$$N_f = 2N_c n_Q + 2n_L + 1,$$

 $N_f < 11N/(4T(R))$ to keep asymptotic freedom

 $\eta$  pNGB is in the U(1) part of SU(N)

$$\kappa_B^{\eta} = \kappa_{WB}^{\eta} = 0,$$
  

$$\kappa_g^{\eta} = \frac{1}{2}N(N-1) \cdot 2n_Q,$$
  

$$\kappa_W^{\eta} = \frac{1}{2}N(N-1) \cdot (N_c n_Q + n_L),$$

### Numerical results

12

shaded area excluded by  $\gamma\gamma > 0.5$  fb

| decay mode     | BR    |
|----------------|-------|
| gg             | 83%   |
| WW             | 11.2% |
| ZZ             | 3.2%  |
| $Z\gamma$      | 2%    |
| $\gamma\gamma$ | 0.4%  |

BR for  $\eta$  of 2 TeV and  $\kappa_W^{\eta}/\kappa_g^{\eta} = 2$ .



#### A more realistic model

|          | $\operatorname{Sp}(2N_c)$ | $SU(3)_c$ | $SU(2)_L$ | $U(1)_Y$ | SU(4) | SU(6) | U(1)       |
|----------|---------------------------|-----------|-----------|----------|-------|-------|------------|
| $Q_1$    | Π                         | 1         | 2         | 0        |       |       |            |
| $Q_2$    |                           |           |           |          | 4     | 1     | $q_{O}$    |
| $Q_3$    |                           | 1         | 1         | 1/2      |       |       | 14         |
| $Q_4$    |                           | 1         | 1         | -1/2     |       |       |            |
| $\chi_1$ |                           |           |           |          |       |       |            |
| $\chi_2$ | H                         | 3         | 1         | 2/3      |       |       |            |
| $\chi_3$ |                           |           |           |          | 1     | 6     | $q_{\chi}$ |
| $\chi_4$ |                           |           |           |          |       |       |            |
| $\chi_5$ |                           | 3         | 1         | -2/3     |       |       |            |
| $\chi_6$ |                           |           |           |          |       |       |            |

The neutral scalar sector contains 2 pNGB σ and η and a massive σ'. η does not couple to gluons and σ' has a too large decay to γγ. σ can reproduce the excess at 2 TeV. Two types of fermions: 4 Q in the fundamental and 6

$$\frac{\sigma}{\kappa_g/f_\sigma} \frac{(2N_c+1)(N_c-1)/f_\sigma}{-6N_c(N_c-1)/f_\sigma}$$
$$\frac{\kappa_B/f_\sigma}{\kappa_B/f_\sigma} \frac{[\frac{8}{3}(2N_c+1)(N_c-1)}{-6N_c(N_c-1)]/f_\sigma}$$

see 1311.6562, 1507.02283 1512.04508

#### Conclusions and perspective for Run 2

- Strong dynamics: other resonances?
- charged/neutral: role of WZ vs WW and ZZ
- Zy and yy channels
- Channels with a Higgs boson (Vh)
- Determine production modes (DY, VBF, GGF) as much as possible exploiting kinematical differences
- Production balance different: @13 TeV DYx5-7, VBFx10 vs 8 TeV