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Signal: atomic nuclei recoiling after interacting with galactic WIMPs

Backgrounds: from environmental radioactivity and cosmic muons:

1)  Electrons recoiling after X-ray or -ray interactions

2)  Charged particles from nuclear disintegrations (mostly  and  decays)

3)  Atomic nuclei recoiling after neutron interactions (same as signal if single-
scattering)

INTRODUCTION
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SEMICONDUCTOR DETECTORS

SuperCDMS detects recoiling nuclei using semiconductor technology 

Eventually all the recoil energy is released as phonons (heat)

Y (ionization yield) depends on the type of 
the recoiling particle  useful for particle-ID

Recoiling Ge nucleus ~0.3

Recoiling electron ~1

Y
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SEMICONDUCTOR DETECTORS

SuperCDMS detects recoiling nuclei using semiconductor technology 

Eventually all the recoil energy is released as phonons (heat)

It's possible to know E
R
 and Y 

from E
P
 and N

q
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SEMICONDUCTOR DETECTORS

Note that E
P
 > E

R
 if voltage bias is applied

E
P
 = g(V) E

R

A voltage bias (V) creating an electric field is required to separate the charge carriers
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SEMICONDUCTOR DETECTORS

Again, it's possible to know E
R
 and Y 

from E
P
 and N

q

A voltage bias (V) creating an electric field is required to separate the charge carriers
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Detectors: 15 cylindrical Ge monocrystals, ~9 kg total

THE SUPERCDMS EXPERIMENT
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252Cf calibration data

Recoiling electrons from 's
(Y = ~1)

Recoiling Ge nuclei from n's
(Y ~ 0.3)

Detectors operating at 
50 mK

Measuring both N
q
 and E

P
  capable of determining both E

R
 and Y

Applied 4 V voltage 
bias (nominal)
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Surface event rejection (fiducialization): enabled by the applied electric field and the 
segmented read-out configuration

THE SUPERCDMS EXPERIMENT

Side view Top view

Neutron background suppression:
● Deployed at Soudan Underground Laboratory (714 m depth)
● Active shielding (muon showers): scintillating plastic, full solid angle
● Passive shielding: polyethylene; also lead for 's
● Structures within shielding: radiopure Cu
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THE CDMSLITE APPROACH

However: Phonon signal can be amplified by increasing the applied electric field

Electronic noise limits the lowest accessible E
R
 (therefore the lowest accessible M


)

Under nominal operation conditions, E
R
 threshold is ~2 keV ( M


  10 GeV)

noise < E
R

noise ~ E
R

(And still interesting WIMP models below 10 GeV: asymmetric DM, etc)
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THE CDMSLITE APPROACH

If voltage bias V applied,

contribution from 
applied electric field
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THE CDMSLITE APPROACH

If voltage bias V applied,

contribution from 
applied electric field

g(V) > 1
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THE CDMSLITE APPROACH

If voltage bias V applied,

contribution from 
applied electric field
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THE CDMSLITE APPROACH

If voltage bias V applied,

contribution from 
applied electric field

g(V) > 1
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(~typical noise fluctuations)
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However, note that only E
P
 can be amplified, not N

q

Particle-ID & fiducialization compromised, reconstruction of E
R
 requires assumptions on Y
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CDMSLITE RUN 1

Used 1 detector only: 6.25 kg day exposure (Aug. 2012)

0.8 keV threshold for NR, no background rejection

CDMSlite, run 1

Exclusion limit calculated by assuming all events in signal region to be WIMPs

Voltage bias: 69 V (nominal: 4 V)  g(V) = 8 for NR, 24 for ER
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CDMSLITE RUN 1

Limitations:
● Acoustic noise in addition to intrinsic electronic noise  increased energy threshold

● No fiducialization, no particle-ID  background limited with very little exposure

Real pulse Acoustic noise

Acoustic noise is produced by components of the cryogenics system
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CDMSLITE RUN 2

Modifications with respect to run 1:
● Hardware and mechanical improvements

● Better rejection of acoustic noise  lower threshold, sensitive to smaller M


● Pulse-based radial fiducialization  increased exposure, sensitive to smaller 


Used 1 detector only (same as run 1): 115.59 kg day exposure (Feb. 2014-Nov. 2014)

0.26-0.35 keV threshold for NR

With respect to run 1, exposure increased by a factor 20, threshold decreased by a factor 2.5

Voltage bias: 70 V (similar to run 1)
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CDMSLITE RUN 2

The fast phonon component is used to construct an estimator of the radial position

Random-triggered events

Intrinsic 
electronic 

noise
Acoustic 

noise

The acoustic noise is rejected using pulse-shape discrimination
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CDMSLITE RUN 2

Event selection:
● Single-scattering (no signal above noise in the other 14 detectors)
● No muon-induced (no signal above noise in the outer scintillating veto)
● Good data quality
● No acoustic noise
● Fiducialized in the radial direction

● Efficiency of acoustic noise cut calculated 
using MC simulations

● Efficiency of radial fiducial cut calculated 
with events from 71Ge electron capture
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CDMSLITE RUN 2

Uncertainty dominated by the assumptions used to reconstruct E
R

New parameter space excluded between 1.6 and 5.5 GeV

Background dominated by electrons recoiling in the bulk, due to X-rays from 71Ge 
electron capture and Compton scattering of radiogenic -rays

Exclusion limit calculated by assuming all events in signal region to be WIMPs

Reconstruction of E
R
 assumes Lindhard model for Y
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FUTURE PLANS: SUPERCDMS SNOLAB

● Deeper laboratory (SNOLAB, 2070 m depth)  suppressed cosmogenic background

● Increased radiopurity  decreased radiogenic background
● Improved energy resolution
● Impressive fiducialization capabilities (already demonstrated in SuperCDMS Soudan)
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FUTURE PLANS: SUPERCDMS SNOLAB

Approved by US DOE and NSF as a next-generation dark matter direct detection 
experiment, with a focus on low-mass WIMPs

30 detectors, arranged in 5 stacks:
● 3 Ge stacks (~50 kg)+1 Si stack (~4 kg)
● 1 stack operating at high-voltage (HV): 4 Ge (~5.6 kg)+2 Si (~1.4 kg) detectors
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Expected to be sensitive to coherent neutrino scattering from solar (8B) neutrinos

FUTURE PLANS: SUPERCDMS SNOLAB
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SUMMARY

● SuperCDMS based on semiconductor technology, measuring both E
P
 and N

q

● In CDMSlite the recoil energy threshold is lowered by amplifying the phonon 
signal. Not possible to amplify the charge signal  compromised background 
rejection capabilities, reconstruction of E

R
 requires assumptions on Y

● The analysis of the second CDMSlite run data allowed to suppress the mechanical 
noise, and included some fiducialization.

● New parameter space has been explored for WIMP masses between 2 and 5 GeV
● SuperCDMS Soudan ended operations on November 2015, SuperCDMS SNOLAB 

is already approved by DoE and currently under development
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THANK YOU...
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Backup
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THE SUPERCDMS EXPERIMENTTHE SUPERCDMS EXPERIMENT

The applied electric field and the read-out configuration enable fiducialization

Charge read-out channels Phonon read-out channels

Fiducialization allows to reject surface events from charged particles
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