Results from the second CDMSlite run and plans for SuperCDMS SNOLAB

Elias Lopez Asamar on behalf of the SuperCDMS Collaboration

Rencontres de Moriond, 18th of March 2015

INTRODUCTION

Signal: **atomic nuclei** recoiling after interacting with galactic WIMPs

Backgrounds: from <u>environmental radioactivity</u> and <u>cosmic muons</u>:

- 1) **Electrons** recoiling after X-ray or γ -ray interactions
- 2) **Charged particles** from nuclear disintegrations (mostly α and β decays)
- 3) **Atomic nuclei** recoiling after neutron interactions (same as signal if single-scattering)

SuperCDMS detects recoiling nuclei using **semiconductor technology**

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$

 $E_P = E_{P,prompt} + E_{P,recombination} = E_R$

Y (**ionization yield**) depends on the type of the recoiling particle \Rightarrow <u>useful for particle-ID</u>

	Y
Recoiling electron	~1
Recoiling Ge nucleus	~0.3

SuperCDMS detects recoiling nuclei using **semiconductor technology**

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$
$$E_P = E_{P,prompt} + E_{P,recombination} = E_R$$

It's possible to know E_{R} and Yfrom E_{P} and N_{q}

A voltage bias (V) creating an electric field is required to separate the charge carriers

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$
$$E_P = E_R + \underline{q_e V N_q} = E_R (1 + Y \frac{q_e V}{\epsilon})$$

Note that $E_p > E_R$ if voltage bias is applied

$$E_{p} = g(V)E_{R}$$

A voltage bias (V) creating an electric field is required to separate the charge carriers

$$N_q = Y \frac{E_R}{\epsilon}, \quad \epsilon(\text{Ge}) = 3.0 \ eV$$
$$E_P = E_R + q_e V N_q = E_R (1 + Y \frac{q_e V}{\epsilon})$$

Again, it's possible to know E_{R} and Yfrom E_{P} and N_{q}

THE SUPERCOMS EXPERIMENT

Detectors: 15 cylindrical **Ge** monocrystals, ~9 kg total

Detectors operating at 50 mK

Applied 4 V voltage bias (nominal)

Measuring both N_a and $E_p \Rightarrow$ capable of determining both E_p and Y

THE SUPERCOMS EXPERIMENT

<u>Surface event rejection</u> (fiducialization): enabled by the applied **electric field** and the **segmented read-out** configuration

Neutron background suppression:

- Deployed at Soudan Underground Laboratory (714 m depth)
- Active shielding (muon showers): **scintillating plastic**, full solid angle
- Passive shielding: **polyethylene**; also <u>lead</u> for γ 's
- Structures within shielding: **radiopure Cu**

Electronic noise limits the lowest accessible E_{R} (therefore the lowest accessible M_{γ})

Under nominal operation conditions, E_{R} threshold is ~2 keV ($\Rightarrow M_{\gamma} > 10 \text{ GeV}$)

(And still interesting WIMP models below 10 GeV: asymmetric DM, etc)

However: Phonon signal can be amplified by increasing the applied electric field

If voltage bias *V* applied,

$$E_{P} = E_{R} + \underbrace{q_{e}VN_{q}}_{\downarrow} = E_{R}(1 + Y\frac{q_{e}V}{\epsilon}) = g(V)E_{R}$$

$$\downarrow$$

$$contribution from applied electric field$$

If voltage bias *V* applied,

If voltage bias *V* applied,

If voltage bias *V* applied,

However, note that only E_p can be amplified, not N_q

Particle-ID & fiducialization compromised, reconstruction of E_{R} requires assumptions on Y

Used 1 detector only: **6.25 kg day** exposure (Aug. 2012)

Voltage bias: 69 V (nominal: 4 V) \Rightarrow g(V) = 8 for NR, 24 for ER

<u>0.8 keV threshold</u> for NR, no background rejection

Exclusion limit calculated by assuming all events in signal region to be WIMPs

Limitations:

- Acoustic noise in addition to intrinsic electronic noise \Rightarrow increased energy threshold
- **No fiducialization, no particle-ID** ⇒ background limited with very little exposure

Real pulse

Acoustic noise

Acoustic noise is produced by components of the cryogenics system

Used 1 detector only (same as run 1): 115.59 kg day exposure (Feb. 2014-Nov. 2014)

Voltage bias: 70 V (similar to run 1)

0.26-0.35 keV threshold for NR

With respect to run 1, exposure increased by a factor 20, threshold decreased by a factor 2.5

Modifications with respect to run 1:

- Hardware and mechanical improvements
- **Better rejection of acoustic noise** \Rightarrow lower threshold, sensitive to smaller M_{γ}
- **Pulse-based radial fiducialization** \Rightarrow increased exposure, sensitive to smaller σ_{χ}

The acoustic noise is rejected using **pulse-shape discrimination**

The fast phonon component is used to construct an estimator of the radial position

Event selection:

- **Single-scattering** (no signal above noise in the other 14 detectors)
- No muon-induced (no signal above noise in the outer scintillating veto)
- Good data quality
- No acoustic noise
- Fiducialized in the radial direction

- Efficiency of acoustic noise cut calculated using MC simulations
- Efficiency of radial fiducial cut calculated with events from ⁷¹Ge electron capture

<u>Background</u> dominated by **electrons recoiling in the bulk**, due to X-rays from ⁷¹Ge electron capture and Compton scattering of radiogenic γ -rays

<u>Uncertainty</u> dominated by the **assumptions used to reconstruct** E_{p}

Reconstruction of E_{R} assumes Lindhard model for Y

Exclusion limit calculated by assuming all events in signal region to be WIMPs

New parameter space excluded between 1.6 and 5.5 GeV

FUTURE PLANS: SUPERCDMS SNOLAB

- **Deeper laboratory** (SNOLAB, 2070 m depth) ⇒ suppressed cosmogenic background
- Increased **radiopurity** \Rightarrow decreased radiogenic background
- Improved **energy resolution**
- Impressive **fiducialization** capabilities (already demonstrated in SuperCDMS Soudan)

FUTURE PLANS: SUPERCDMS SNOLAB

30 detectors, arranged in 5 stacks:

- 3 **Ge** stacks (~**50** kg)+1 **Si** stack (~**4** kg)
- 1 stack operating at **high-voltage** (HV): 4 **Ge** (~**5.6 kg**)+2 **Si** (~**1.4 kg**) detectors

Approved by US DOE and NSF as a next-generation dark matter direct detection experiment, with a focus on low-mass WIMPs

FUTURE PLANS: SUPERCDMS SNOLAB

Expected to be sensitive to **coherent neutrino scattering** from solar (⁸B) neutrinos

SUMMARY

- SuperCDMS based on semiconductor technology, measuring both E_p and N_a
- In CDMSlite the recoil energy threshold is lowered by amplifying the phonon signal. Not possible to amplify the charge signal \Rightarrow compromised background rejection capabilities, reconstruction of E_p requires assumptions on *Y*
- The analysis of the second CDMSlite run data allowed to suppress the mechanical noise, and included some fiducialization.
- New parameter space has been explored for WIMP masses between 2 and 5 GeV
- SuperCDMS Soudan ended operations on November 2015, SuperCDMS SNOLAB is already approved by DoE and currently under development

THANK YOU...

THE SUPERCOMS EXPERIMENT

The <u>applied electric field</u> and the <u>read-out configuration</u> enable **fiducialization**

Charge read-out channels

Phonon read-out channels

Fiducialization allows to reject surface events from charged particles