$\overline{B} \to D^{(*)} \tau \overline{\nu}_{\tau}$ decays with hadronic and semileptonic tagging at Belle

Pablo Goldenzweig KIT

Moriond EW

La Thuile, Italy March 12-19, 2016

- ²² Review of Belle's 2015 result of $\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}$ with hadronic tagging, and the current world average.
- Introduce Belle's new measurement of $\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$ with the semileptonic tagging method and compatibility with New Physics models.

The Belle Experiment

The KEKB accelerator

- · Asymmetric e^+e^- collider
- · Mainly operates at the $\Upsilon(4S)$ resonance

Final data sample

- $711fb^{-1}$ $\Upsilon(4S)$ resonance
- $121 f b^{-1} \Upsilon(5S)$ resonance

The Belle detector

$\overline{B} \to D^{(*)} \tau \overline{\nu}$ decays and 2HDM

Semitauonic *B* decays of type $b \to c\tau\nu_{\tau}$ are sensitive probes to search for New Physics. NP could change \mathcal{B} and τ polarization. Effect could be different for *D* and D^* .

2HDM of type II

- A charged Higgs of spin 0 couples to the τ .
- Could enhance or decrease the ratios $\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\overline{B} \to D^{(*)}\tau\nu)}{\mathcal{B}(\overline{B} \to D^{(*)}\ell\nu)}$ depending on $\tan^2 \beta/m_{H^{\pm}}^2$.

BaBar 2013: The combination of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ excludes the type II 2HDM charged Higgs boson at 99.8% confidence level for any value of tan $\beta/m_{H^{\pm}}$.

Phys. Rev. D 78 072012 (2013)

Measure the ratios:

$$\mathcal{R}(D^{(*)}) = \frac{\mathcal{B}(\overline{B} \to D^{(*)} \tau \nu)}{\mathcal{B}(\overline{B} \to D^{(*)} \ell \nu)} = \frac{\text{signal}}{\text{normalization}} \quad (\ell = e, \mu)$$

au reconstructed only using leptonic decays, $au o \ell \nu_{ au} \nu_{\ell}$:

- Signal and normalization are identified by the same particles in the final state.
- Leads to cancellation of dependence on form factors, the CKM matrix element $|V_{cb}|$, and on various sources of uncertainty in the ratios $\mathcal{R}(D^{(*)})$.
- Also allows for precise SM predictions with uncertainties 2% (6%) for $\mathcal{R}(D)$ ($\mathcal{R}(D^*)$). Phys. Rev. D 78, 014003 (2008), Phys. Rev. D 85, 094025 (2012)

Experimentally challenging: Neutrinos in the final state prohibit direct signal-side reconstruction

 \Rightarrow Must fully reconstruct $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B_{tag}B_{sig}$ events

The Full Reconstruction method

Typical B factory event

- Hierarchical reconstruction of the B_{tag} using NeuroBayes¹.
- Check if the remaining particles in the detector are consistent with the signal signature.

¹Nucl. Instrum. Meth. A654: 432 (2011)

Which tag-side reconstruction?

Phys. Rev. D 92, 072014

Fit is repeated with PDF generated for type II 2HDM with $\tan\beta/m_H = 0.5 \text{ GeV}^{-1}$

Compatible with type II 2HDM around $\tan\beta/m_H = 0.5 \text{ GeV}^{-1}$

Including LHCb $\mathcal{R}(D^*)$ measurement

 3.9σ combined deviation (including correlations) from the SM

<u>New</u> measurement of $\mathcal{R}(D^*)$ with SL tag

7.2.2016 10 / 19

Determination of $\mathcal{R}(D^*)$

Separate correctly reconstructed signal and normalization events using NeuroBayes NN with the following variables:

- Missing mass squared: $M_{\text{miss}}^2 = \sqrt{(2E_{\text{beam}} \sum_i E_i)^2 |\sum_i \vec{p_i}|^2}$
- Visible energy: $E_{\text{vis}} = \sum_{i} E_{i}$, where (\vec{p}_{i}, E_{i}) is the reconstructed fourmomentum at the $\Upsilon(4S)$ rest frame of particles used in the reconstruction.
- $\cos \theta_{B-D^*\ell}$
- \Rightarrow Trained on MC samples of signal and normalization.

Dominant backgrounds:

- Fake (falsely reco'd) D^* .
- $B \to D^{**} l \nu_l$, with $D^{**} \to D^{(*)}$
- $B \to X_c D^*$, with $X_c \to$ decaying semileptonically.

Separated from signal and normalization using the sum of energies of neutral clusters not associated with reco'd particles: E_{ECL} 2D fit to NN and E_{ECL} to extract signal and normalization

Component	Yield	Shape		
Signal	Float	1D X 1D		
Normalization	Float	2D		
Fake $D^{(*)}$	Fix	2D		
$B \to D^{**} l \nu$	Float	2D		
Other	Fix	2D		

Determination of $\mathcal{R}(D^*)$

2D fit to NN and E_{ECL} :

Preliminary

$$\mathcal{R}(D^*) = \frac{1}{\mathcal{B}(\tau^- \to l^- \bar{\nu}_l \nu_\tau)} \cdot \frac{\varepsilon_{\text{norm}}}{\varepsilon_{\text{sig}}} \cdot \frac{N_{\text{sig}}}{N_{\text{norm}}}$$

 $\varepsilon_{\rm norm}/\varepsilon_{\rm sig} = 1.289 \pm 0.015$ (from MC simulation)

 $\mathcal{R}(D^*) = 0.302 \pm 0.030(\text{stat}) \pm 0.011(\text{syst})$ (13.8 σ)

Systematic uncertainties and cross-checks

	$\mathcal{R}(D^*)$ [%]			
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{\mathrm{sig}} = e$	$\ell^{\rm sig} = \mu$	
MC statistics for PDF shape	2.2%	2.5%	3.9%	
PDF shape of the normalization	$^{+1.1}_{-0.0}\%$	$^{+2.1}_{-0.0}\%$	$^{+2.8}_{-0.0}\%$	
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$^{+1.0}_{-1.7}\%$	$^{+0.7}_{-1.3}\%$	$^{+2.2}_{-3.3}\%$	
PDF shape and yields of fake $D^{(*)}$	1.4%	1.6%	1.6%	
PDF shape and yields of $B \to X_c D^*$	1.1%	1.2%	1.1%	
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2%	1.5%	1.9%	
Modeling of semileptonic decay	0.2%	0.2%	0.3%	
$\mathcal{B}(au^- o \ell^- ar{ u}_\ell u_ au)$	0.2%	0.2%	0.2%	
Total systematic uncertainties	$^{+3.4}_{-3.5}\%$	$^{+4.1}_{-3.7}\%$	$^{+5.9}_{-5.8}\%$	

- Dominant uncertainty arises from the limited size of the MC samples for the PDF shapes. \Rightarrow Evaluated with Toy MC studies.
- Large error due to poorly known $\mathcal{B}(B \to D^{**} l\nu_l)$ and of the D^{**} decay. \Rightarrow Varied within their uncertainties.

Consistent results for individual samples (separated @ B_{sig}) $\mathcal{R}(D^*) = 0.311 \pm 0.038 \pm 0.013 \ (\ell^{\text{sig}} = e)$ $\mathcal{R}(D^*) = 0.304 \pm 0.051 \pm 0.018 \ (\ell^{\text{sig}} = \mu)$

P. Goldenzweig

 $\overline{B} \to D^{(*)} \tau \overline{\nu}_{\tau}$ at Belle

Preliminary

Central value close to Belle hadronic tag result.

Precision improvement over Belle hadronic tag and LHCb results.

P. Goldenzweig

 $\overline{B} \to D^{(*)} \tau \overline{\nu}_{\tau}$ at Belle

Karlsruhe Institute of Technology

Kinematic variables:

Preliminary

- The momentum transfer $q^2 \equiv (p_B p_{D^{(*)}})^2$ cannot be calculated with a semileptonic tag due to a neutrino on the tag side (employed in the hadronic analyses).
- ⇒ Use the background-subtracted momenta of D^* and lepton in the CM frame in the signal region: NN > 0.8 and $E_{ECL} < 0.5$

$\mathcal{R}(D^*)$ in 2HDM type-II

BELLE

Compatibility test:

- 1) Construct a PDF for signal events for a *scan* of $\tan \beta / m_{H^{\pm}} \in [0, 1] \text{GeV}^{-1}$.
- Find that the measured value of $\mathcal{R}(D^*)$ 2)matches the theoretical prediction at $\frac{\tan\beta}{m_{\mu^+}} \simeq 0.7 \,\,\mathrm{GeV}^{-1}.$
- 3) *P*-values of p_{D^*} and p_l similar to SM case.

1.0

1.5

2.0 p [GeV/c]

Preliminary

$\overline{B} \to D^{(*)} \tau \overline{\nu}_\tau$ decays and Leptoquarks

- Bosons which couple to a lepton-quark pair.
- Carry color & electric charge, baryon &lepton #.
- Unified description of leptons and quarks.

Assignment	OT	Quan	tum	Num	bers	

	S_1	S_3	V_2	R_2	U_1	U_3
spin	0	0	1	0	1	1
F = 3B + L	-2	-2	-2	0	0	0
$SU(3)_c$	3*	3*	3*	3	3	3
$SU(2)_L$	1	3	2	2	1	3
$U(1)_{Y=Q-T_3}$	1/3	1/3	5/6	7/6	2/3	2/3

- 6 LQ models in $b \to c \tau \nu_{\tau}$ decays
 - $B \to D^{(*)} \tau \nu$ is sensitive to the tensor operator.
 - R_2 -type LQ model good candidate for compatibility test.
 - Relative Wilson coeffs. $C_{S_2} = +7.8 \ C_T$ at the *b* mass scale, assuming $M_{LQ} = O(1)$ TeV.

References: PRD 87, 034028 (2013); PRD 88, 094012 (2013). Image credits: Y. Sakaki (KEK)

$\mathcal{R}(D^*)$ in R_2 -type Leptoquark

 $\overline{B} \to D^{(*)} \tau \overline{\nu}_{\tau}$ at Belle

- ► $\overline{B} \to D^{(*)} \tau^- \overline{\nu}_{\tau}$ results with hadronic tag compatible with type II 2HDM around $\tan\beta/m_H = 0.5 \text{ GeV}^{-1}$.
- First result of $\overline{B}{}^0 \to D^{*+} \tau^- \overline{\nu}_{\tau}$ with the semileptonic tagging method shown today.
 - **Central value** close to Belle hadronic tag result. **Precision** improvement over Belle hadronic tag and LHCb results.
 - Compatible with the SM and type-II 2HDM around $\tan\beta/m_H = 0.7 \text{ GeV}^{-1}$.
 - R_2 type leptoquark model with $C_T = +0.36$ is disfavored.
 - To be submitted to PRD this month.