Search for A to Zh(bb) in ATLAS at 13 TeV

Carlo Pandini (LPNHE - Paris) on behalf of the ATLAS collaboration

Rencontres de Moriond - Electroweak Session - 16/03/2016

ATLAS-CONF-2016-015

Search for a CP-odd A boson in the Zh(bb) decay channel

Search for a CP-odd scalar A boson through ggA and bbA production in the decay channel to Zh, in the context of **2HDMs** with the full 2015 dataset (L=3.2/fb)

Two main channels combined:

 $Zh \rightarrow vvbb$ (dominant at **high** m_A) $Zh \rightarrow I^+I^-bb$ (dominant at **low** m_A)

Search strategy: (h→bb) decay

resolved regime (p_T^z < 500 GeV): calorimeter jets R=0.4 ('small-R')

merged regime (p_T^z > 500 GeV): calorimeter jet R=1.0 ('large-R')

calorimeter jet R=1.0 ('large-R') [b-tagging on *track-jets* R=0.2]

Search for a CP-odd A boson in the Zh(bb) decay channel

Two main channels combined:

 $Zh \rightarrow vvbb$ (dominant at **high** m_A) $Zh \rightarrow I^+I^-bb$ (dominant at **low** m_A)

Search strategy: (h→bb) decay

resolved regime (p_T^z < 500 GeV): calorimeter jets R=0.4 ('small-R')

merged regime ($p_T^z > 500 \text{ GeV}$):

calorimeter jet R=1.0 ('large-R') [b-tagging on *track-jets* R=0.2]

Analysis Overview and Selections

SR Common Selection [Zh→(vv,l+l-)bb]

b-jets Energy Corrections

- ► semileptonic b-decays add closest (△R) muon's energy to b-tagged jets
- jet response correction (small-R jets) multiplicative p⊤ response factor on b-jet 4vector

- **OLepton:** high E_T^{miss} (> 150 GeV)
 - QCD-rejection cuts (topology + kinematic)
- **2Lepton:** \blacktriangleright low E_T^{miss} ($E_T^{miss}/\sqrt{H_T} < 3.5$)
 - ► m_{II}-window around Z peak (I=e,mu)

Analysis Phase Space: Signal and Control Regions

Systematic Uncertainties and Fit Model

Data fitted to MC prediction with binned profile likelihood ratio test statistic

Discriminating variable:

mzh invariant mass (2Lepton)

m_{T,zh} transverse mass (0Lepton)

$$m_{\mathrm{T},Zh} = \sqrt{(E_{\mathrm{T}}^{h} + E_{\mathrm{T}}^{\mathrm{miss}})^{2} - (\vec{p}_{\mathrm{T}}^{h} + \vec{E}_{\mathrm{T}}^{\mathrm{miss}})^{2}}$$

dominant experimental systematics:

calibration/resolution of small-R and large-R jets energy, large-R jets mass (high p_T^Z), b-tagging efficiency and mistag rate

theoretical systematics & background normalisation:

ttbar (0Lepton / 2Lepton)
Z+(bb,bc,cc) / Z+(bl,cl) / Z+I =
W+(bb,bc,cc,bl) / W+cl / Z+I

- overall normalisation freely floating (gaussian prior for the smaller contributions: Z+I, W+jets)
- relative acceptance variations across analysis categories
- systematic variation on the shape of m_{Zh} (or $m_{T,Zh}$)

Acceptance and/or shape systematics for the smaller backgrounds (diboson, single-top) and signals

After the maximum likelihood fit to data, the total uncertainty on the signal cross-section (m_A=600GeV) is dominated by data statistics (~80%)

Results & Conclusions: Cross-Section Limits

First Run2 combined result (low+high p_T^Z , 0+2Lepton channels) Run1 exclusion limits improved for $m_A \gtrsim 800$ GeV

Looking forward to the 2016 LHC run for more data!

background-only hypothesis

m_A=260,440 GeV

[local significance $\sim 2\sigma$]

Back-Up

0Lepton 2-tag SR high p_T^z event

m_{T,Zh} **= 985 GeV**

Cross-Section Limits: bbA vs ggA production

 m_{A} [GeV]

Results: 2 Higgs Doublet Models Interpretation

The results can be interpreted in the framework of **Type-I** and **Type-II** 2HD models:

exclusion limits are shown for $m_A=600$ GeV in the tan(β) / cos(β - α) plane,

for points in the parameter space with $\Gamma_A/m_A < 5\%$

- 2HDMs 1 charged-scalar 1 pseudo-scalars
- 2 neutral-scalars

$tan(\beta) = v2/v1$

 $(\beta = rotation angle$ that diagonalises the squared mass matrices of charged scalars and pseudo scalars)

10²

10

-0.8

cos(β-a)

(a = rotation angle)that diagonalises the squared mass matrix of the scalars)

Avoid tree-level FCNC imposing discrete symmetries:

- Type I: all quarks couples to 1 of the doublets
- Type II: Q=2/3 RH and Q=-1/3 RH couple to different doublets

Detailed analysis selection

Variable	Low- $p_{\rm T}^Z$	High- $p_{\rm T}^Z$
$p_{\rm T}^Z$ [GeV]	<500	≥ 500
$N_{b-\text{tag jet}}$	1,2	1,2
N _{small-R} jet	≥2	≥0
N _{large-R jet}	≥0	≥1
$m_{\rm dijet} \text{ or } m_{\rm jet} [GeV]$	110–140	75–145

SR Common Selection [Zh→(vv,l+l-)bb]

0Lepton specific cuts [Zh→vvbb]

Variable	Low- $p_{\rm T}^Z$	High- $p_{\rm T}^Z$
$E_{\rm T}^{\rm miss}$ [GeV]	> 150	-
$\sum_{i=1}^{N_{jet}=3(2)} p_T^{jet_i} \text{ [GeV]}$	> 150 (120)(*)	_
$p_{\rm T}^{\rm miss}$ [GeV]	> 30	> 30
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}}, \vec{p}_{\mathrm{T}}^{\mathrm{miss}})$	$< \pi/2$	$<\pi/2$
$\Delta \phi(\vec{E}_{\mathrm{T}}^{\mathrm{miss}},h)$	$> 2\pi/3$	$> 2\pi/3$
min[$\Delta \phi(\vec{E}_{T}^{miss}, small-R jet)$]	$> \pi/9(*)$	$> \pi/9(*)$
$\Delta \phi(j,j)$	$< 7\pi/9$	_

2Lepton specific cuts [Zh→l+l-bb]

m_{ee} [GeV]	70–110	70–110
$m_{\mu\mu}$ [GeV]	70–110	55-125
$E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}}$ [$\sqrt{\mathrm{GeV}}$]	< 3.5	_

Event Yields

One b-tag						
	0-leptons low- p_T^Z	0-leptons high- p_T^Z	2-leptons low- p_T^Z	2-leptons high- p_T^Z		
Z + l	55 ± 31	2.0 ± 1.0	118 ± 38	0.57 ± 0.28		
Z + (cl, bl)	518 ± 54	8.2 ± 1.8	1943 ± 65	3.18 ± 0.65		
Z + (bb, bc, cc)	82 ± 13	1.82 ± 0.35	391 ± 23	0.74 ± 0.13		
W + l	48 ± 22	-	-	-		
W + cl	111 ± 42	1.17 ± 0.45	0.67 ± 0.28	-		
W + (bb, bc, cc, bl)	185 ± 71	1.80 ± 0.63	10.1 ± 4.2	-		
tĪ	1202 ± 77	2.05 ± 0.72	276 ± 22	-		
single top	99 ±10	0.49 ± 0.11	15.3 ± 1.6	-		
diboson	27.2 ± 4.6	5.3 ± 1.0	26.3 ± 6.1	0.67 ± 0.32		
(W/Z)h	3.3 ± 1.6	0.16 ± 0.08	3.7 ± 1.8	0.04 ± 0.02		
total background	2332 ± 45	23.0 ± 2.6	2784 ± 47	5.2 ± 0.9		
expected $A \rightarrow Zh$ (gluon-fusion)	5.00 ± 0.41	-	1.73 ± 0.12	-		
expected $A \rightarrow Zh$ (<i>b</i> -quark-associated)	3.05 ± 0.26	-	1.01 ± 0.08	-		
data	2295	25	2769	8		
Two b-tags						
	0-leptons low- p_T^Z	0-leptons high- p_T^Z	2-leptons low- p_T^Z	2-leptons high- p_T^Z		
Z + l	0.13 ± 0.44	0.01 ± 0.01	-	-		
Z + (cl, bl)	4.7 ± 1.8	0.06 ± 0.03	9.6 ± 4.0	0.02 ± 0.01		
Z + (bb, bc, cc)	81 ± 13	0.75 ± 0.15	490 ± 22	0.36 ± 0.05		
W + l	-	0.02 ± 0.01	-	-		
W + cl	3.6 ± 2.1	0.04 ± 0.02	-	-		
W + (bb, bc, cc, bl)	37 ± 14	0.28 ± 0.09	0.42 ± 0.20	-		
tī	392 ± 24	0.22 ± 0.11	284 ± 22	-		
single top	27.8 ± 2.9	-	6.39 ± 0.60	-		
diboson	6.1 ± 3.1	0.05 ± 0.03	0.57 ± 0.23	-		
(W/Z)h	5.4 ± 2.6	0.10 ± 0.05	7.6 ± 3.7	0.03 ± 0.01		
total background		1 52 + 0.25	700 + 22	0.42 ± 0.05		
	557 ± 18	1.55 ± 0.25	199 ± 25	0.12 2 0.05		
expected $A \rightarrow Zh$ (gluon-fusion)	557 ± 18 9.21 ± 0.76	- -	3.65 ± 0.29	-		
expected $A \rightarrow Zh$ (gluon-fusion) expected $A \rightarrow Zh$ (b-quark-associated)	557 ± 18 9.21 ± 0.76 5.85 ± 0.47	- -	799 ± 25 3.65 ± 0.29 2.21 ± 0.17	-		

Table 2: The numbers of expected and observed events for all the signal regions. The expectation is shown after the maximum likelihood fit to the data. The quoted uncertainties are the combined systematic and statistical uncertainties. The numbers predicted for a $A \rightarrow Zh$ signal process in gluon-fusion and *b*-quark-associated production assume that $\sigma(gg \rightarrow A) \cdot BR(A \rightarrow Zh) \cdot BR(h \rightarrow b\overline{b}) = \sigma(pp \rightarrow b\overline{b}A) \cdot BR(A \rightarrow Zh) \cdot BR(h \rightarrow b\overline{b}) = 113 \text{ fb}$, for $m_A = 600 \text{ GeV}$. This cross section corresponds to the 95% CL upper limit on these effective cross sections at this mass. A dash indicates a negligible yield of events.

Control Regions: low p_T^z

Signal Regions: low p_T^Z

Signal Regions: high p_T^z

OLepton Event Displays

High p_T^z

Low p_T^Z

2Lepton Event Displays

2Lepton Event Displays

High p_T^z