LHC Run1 anomalies @ high mass and summary of Run2 observations

Maurizio Pierini CERN

One remark before starting

- Despite being member of one LHC experiment, I am here speaking for myself
- I prepared this talk as any outsider would have done
- The main purpose is to stimulate a discussion on this topic and use Moriond as an opportunity to make the point on this long standing puzzle
- Will show some combination performed by experimentalists (ATLAS & CMS individual members collaborating on their own) or theorists, using public information provided by the experiments
 PARENTAL

ADVISORY

- When I do so, I make it clear with a symbol
- As this is not an ATLAS/CMS talk, no new results shown

DiBoson resonance Searches

10

 10^{-2}

 10^{-3}

10

 10^{-2}

WW, 2.9 σ in ZZ

2.50 after Look Elsewhere effect

3.5

m_{ii} [TeV]

10

 10^{-2}

 10^{-3}

How does it work? Boosted jets

- SM bosons decay to 2q final states, giving usually 2 jets
- For large enough p_T , decay products merge into a single massive jet
- Jet Mass main tool for discriminating signal vs. background

How does it work? Boosted jets

- Further discrimination from pT & angular distribution of jet constituents (so-called jet substructure)
- Unlike classic QCD jets, two collimated clusters of particles inside jet
- Several variables proposed to quantify this behavior

pT distribution of jet constituents at Generator-Level (PYTHIA8) from boosted gluons/ quarks / Z->qq bosons (from RS gravitons)

How does it work? Boosted jets

- Further discrimination from pT & angular distribution of jet constituents (so-called jet substructure)
- Unlike classic QCD jets, two collimated clusters of particles inside jet
- Several variables proposed to quantify this behavior

Other ATLAS Diboson Searches

- Lack of a signal in other channels reduces the excess
- This was known (the other searches are older). Not everybody payed attention to that
- Now ATLAS quantified the reduction: significance drop by 1σ, i.e. at most
 2.4σ (depending on signal hypothesis)

ATLAS arXiv:1506.00962

CMS Diboson Searches

<u>CMS arXiv:1405.1994</u>

9

<u>CMS arXiv:1405.3447</u>

ADVISORY UNOFFICIAL COMBINATION ADVISORY

F. Dias et al. <u>http://arxiv.org/abs/1512.03371</u>

ADVISORY INOFFICIAL COMBINATION JJ/INJ/IIJ COMPATIBILITY @2 TeV

If one assumes BR(X->WW)=100%, the experimental results make no sense

- no signal in IvJ analyses, the strongest
- The lvJ result is then capable of excluding the JJ ATLAS excess
- If instead BR(X->ZZ)=100%, IvJ plays no role
 - the small excess in IIJ reinforce the JJ excess
 - the signal xsec is reduced
 - The W'->WZ is the ideal test of compatibility
 - interestingly, the picture is similar to ZZ

F. Dias et al. http://arxiv.org/abs/1512.03371

ADVISORY NOFFICIAL COMBINATION

F. Dias et al. http://arxiv.org/abs/1512.03371

• Combination points to a signal strength 1/2 smaller than ATLAS JJ excess • (Local) Significance $\approx\!2.5\sigma$

Adding BEH boson to final states

Boosted BEH bosons

- Boosted BEH bosons → bb are even cleaner than W/Z bosons
 - larger mass means less QCD background
 - possibility of tagging one or two b "subjets"
- More than bb final states
 - gg/qq final states can be treated like for V mesons
 - ττ decays offer special signatures (jets with few tracks)
 - fully hadronic WW decays (massive jet with multiple subjets)

CMS-BTV-13-001

ΔR<0.3

M_µ [GeV]

ΔR<0.3

X→H(bb)W(lv) CMS search

15

- Same analysis strategy as V(qq)W(*lu*). Better S/B
 - Added b-tagging for Higgs: large suppression factor to bkg
 - Tuned the jet mass window around 125 GeV: more bkg suppression
- Observed 4 events at M_{WH} ≈ 1800 GeV in electron channel (2.9σ local significance). Nothing in the muon channel
- Combination gives 2σ significance for local significance

<u>CMS-EXO-14-010</u>

ATLAS vs CMS comparison

Seen in Other Searches?

Dijet

≈2σ (local) in CMS
smaller "excess" in ATLAS
Only place where both experiments have observed limit > expectation

More exotic signatures

- Excess seen by CMS
 - one flavor only (OK for this model)
 - one bin only
 - No excess in ATLAS
- To be checked, but not very promising

Lesson from Run I

- Interesting situation overall
- Level of attention raised. The full story made it to the press
 Interesting "exercise" in view off what happened after (e.g. 750 GeV bump)
 - The theory community shows immediate interest on the large excess. The series of small excesses becomes "THE ATLAS EXCESS"
 - Everyone forget that the other channels are pushing the big excess down
 - ... despite individual averages by ATLAS and CMS
 - eventually proven by the unofficial combination
 - Lesson to be learned
 - Let's stay calm
 - Let's look around
 - Don't sit on the best case scenario ignoring the rest
- Lesson learned? Not really ...

Open questions

- Is the overall VV/VH picture consistent?
 - Excess is driven by a few channels (JJ for VV, lvJ for VH) but not seen in others (e.g., lvJ, the most sensitive VV search)
 - ("unofficial") combination brings the signal strength in VV down by a factor ≈ 2
- How solid is the background estimate? Is the jet-mass cut biasing the diboson mass shape?
 - All all-jet analyses (VV and JJ) use essentially a common empirical function
 - Other searches use instead MC-assisted bkg predictions
 - different selection variables in different experiments: would be interesting to see an ATLAS-like search in CMS and vice versa
- Is jet substructure helping or biasing the search?
 - Not essential @ 2 TeV (e.g., not used in some semileptonic searches)

Run Il results (as presented in December)

From Run I to Run II

- Increase in energy compensates the lower luminosity
- Effectively, the new dataset should be comparable to what we saw in Run
- While we are dealing with small numbers (small excesses), the result of RunII are already significative for a better understanding of the situation

From Run I to Run II

- Increase in energy compensates the lower luminosity
- Effectively, the new dataset should be comparable to what we saw in Run
- While we are dealing with small numbers (small excesses), the result of RunII are already significative for a better understanding of the situation

Dijet Resonance Search

- DiJet Run II results confirm the Run I picture
 - moderate excess around 1.8 TeV. Nothing spectacular enough to claim anything
- Maybe Run II confirms too much of Run I. Are we seeing an issue with the analyses

CMS Run I vs Run II

- Up & Down fluctuations qualitatively "in sync" between Run I and Run II
- Are we seeing a discrepancy between fit lineshape and data?
 - Not according to the QCD MC ...
- Should we look for alternative background predictions?

Diboson @13 TeV

- Not much of an excess
- Still, not enough lumi to exclude the Run I excess or to confirm it
 - (particularly the 1/2 reduced cross section after combination)

A VV/VH short summary

- The physics lesson
 - The 2 TeV Run I excess is not dead, but certainly it doesn't live its best moment
 - Run II data are giving us useful information
 - gg/qq-> X -> WW/WZ hypothesis strongly challenged
 - qq->X-> WZ scenario still alive
 - search in vvJ final state puts string bounds
 - Still, lumi is too small to conclude anything
 - 2016 Data will be fundamental
- And the sociology one

KEEP CALM AND KEEP WORKING

- We should take a deep breath and stop jumping up and down at the minimal opportunity (to me the "ATLAS excess" thing was a very poor choice of words)
- This is a marathon. We just don't know if we are at Km 1 or Km 38

A few words on the diphoton excess @750 GeV

PARENITAL ADVISORY A Private CMS+ATLAS Combination PARENITAL UNOFFICIAL COMBINATION

- Repeat fits from digitised plots @13 TeV and @8TeV [Jamboree analyses]
- Compute significance vs experiment, energy, production mechanism, and width
 - in general, quoted significance smaller than what experiments quote
 - exercise is conservative and valid beyond just the qualitative level

33

<u>M. Buckley, arXiv:1601.04751</u>

PARENITAL ADVISORY A Private CMS+ATLAS Combination PARENITAL UNDEFICIAL COMBINATION

 Both for large and small width, the large ATLAS Run II excess is pushed down by CMS Run II + CMS/ATLAS Run I

- The average close to CMS central value, but with reduced uncertainty
- Overall, the significance increases (not as much the naive/wrong expectation

34

M. Buckley, arXiv:1601.04751

PARENITAL ADVISORY A Private CMS+ATLAS Combination PARENITAL UNDEFICIAL COMBINATION

Spin o Narrow	ATLAS narrow	CMS narrow	Combined narrow	ATLAS wide	CMS wide	Combined wide
8 TeV	-	1.2 σ	1.2 σ	-	1.7 σ	1.7 σ
13 TeV	3.2 σ	2.0 σ	3.4 σ	3.5 σ	2.0 σ	3.0 σ
Combined	n.a.	n.a.	3.4 σ	n.a.	n.a.	3.4 σ

- Both for large and small width, the large ATLAS Run II excess is pushed down by CMS Run II + CMS/ATLAS Run I
- The average close to CMS central value, but with reduced uncertainty
- Overall, the significance increases (not as much the naive/wrong expectation

<u>M. Buckley, arXiv:1601.04751</u>

Open Questions & More Info Needed

- Clearly very exiting, but with some open question
 - Is the large-width scenario really preferred (larger LEE might compensate larger significance)
 - Could we see a profile in width, at fixed or profiled mass?
- Run I vs Run II
 - CMS result more significant when Run I is added
 - ATLAS claims " 2σ compatibility" in absence of a Run I excess
 - with which PDF assumption? gg or qq?
 - What's the local/global significance when Run I and Run II are combined
 - In general, why do we present things so that people (i.e., theorists) feel allowed to forget about Run I?
 - The paper I showed is quite a rare exception

Backup Slices

Bkg estimate from bump-hunt fit

 $P_0(1-x)^{P_1}$

 $\chi P_2 + P_3 \ln(x)$

 $x = m_{ii}$

 $d\sigma$

dm_{ii}

- Start from the published data (hep format or plots)
- Bkg estimate problematic
 - missing correlations, which often matter
 - (sometimes) bkg uncertainties not quoted
- When info missing, bkg estimate using a dijet-like bump hunt
 - fit in sideband vs full region give similar results
 - Simpler function (expo) used for low-stat channels (IIJ)
 - For ATLAS VV fully hadronic, simplified function used according to ATLAS prescription
- Diagonalize covariance matrix + Bkg systematic for eigenvalues

Comparison with nominal result

In general, nominal bkg (from ATLAS or CMS) within our fit+systematic

Limit Comparison

- Nominal+systematics estimate used in a template fit
- Signal parameterized from available information
 - signal efficiency
 - benchmark models for specific mass values
 - linear interpolation within benchmarks for generic mass values
- Limit extraction with asymptotic CLs reproduces trends in nominal result
- Discrepancies between nominal results & out fit (channel dependent)
 - approximately mass independent
- Rescale the expected limit by constant factor to match nominal
- Good agreement observed after rescaling (fudge factor)

ATLAS+CMS "unofficial" combo: WW hypothesis

PARENTAL ADVISORY

ATLAS+CMS "unofficial" combo: ZZ hypothesis

PARENTAL ADVISORY

$X \rightarrow H(bb)W(lv)/Z(ll)/Z(vv) ATLAS search$

- ATLAS searched for $X \rightarrow VH$ final states with resolved $H \rightarrow bb$
- Several V final states combined: Z(lv)/Z(ll)/Z(vv)
- No dedicated boosted topology. Use instead dijet system (with Anti-kT jets with R=0.4)
- Analysis sensitive to resonances ≈ 2 TeV
 - result quoted as cross section exclusion for masses up to 1900 GeV
 - no evidence for a signal

$X \rightarrow H(\tau \tau)V(qq)$ CMS search

- Same V tagger as other analyses
- Special reconstruction of boosted taus
- Background predicted from data sidebands
 - Iow jet mass window
 - ditau mass window below the Z
- No excess observed

CMS-EXO-13-007

CMS HZ Search

10²

GeV

Events

V 10

10⁻²

CMS

Preliminary

- Data

Background fit

 $V^{HP}H_{br}$

····· Z' \rightarrow HZ (1.0, 1.5, 2.0 TeV) --- W' \rightarrow HW (1.0, 1.5 2.0 TeV)

2

19.7 fb⁻¹ (8 TeV)

- Same strategy as fully hadronic VV search
- Sensitive to both WH and ZH (no discrimination)
- No significant excess seen: some hint of a bump, but uncertainty on bkg shape "covers" it
- Results combined assuming Higgs SM BRs

47

X→H(bb)W(lv) CMS search

Jet mass compatible with bkg-only distribution for muon sample

• expected, since the bkg is from fake Hbb candidates

 Interestingly, the excess events translate into a signal-like bump also in the Higgs mass

CMS-EXO-14-010

Dilepton

- CMS sees excess around 2 TeV vs ATLAS sees no excess
- Many other excesses seen (narrow resonance, each fluctuation is signal like, i.e. LEE)
- Two statements are not in contradiction: same observed limits
- Not very conclusive

ADVISORY UNOFFICIAL COMBINATION

M. Buckley, arXiv:1601.04751