Recent Oscillation Results at T2K

Christine Nielsen University of British Columbia For the T2K Collaboration Moriond EW 2016

Neutrino Oscillations

Two sets of eigenstates for neutrinos: mass & flavor

- Flavor states interact
- Mass states propagate

Flavor

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_{23} & \sin \theta_{23} \\ 0 & -\sin \theta_{23} & \cos \theta_{23} \end{pmatrix} \begin{pmatrix} \cos \theta_{13} & 0 & \sin \theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin \theta_{13} e^{i\delta} & -0 & \cos \theta_{13} \end{pmatrix} \begin{pmatrix} \cos \theta_{12} & \sin \theta_{12} & 0 \\ -\sin \theta_{12} & \cos \theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$
Atmospheric Reactor Solar
Related through the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) Matrix Similar to CKM matrix for quarks

Measurable parameters: Δm_{32}^2 , Δm_{21}^2 , θ_{12}^2 , θ_{13}^2 , θ_{23}^2 , δ_{CP}^2

Mixing angles $\theta_{23} = 45.8 \pm 3.2^{\circ}$ $\theta_{12} = 33.4 \pm 0.9^{\circ}$ $\theta_{13} = 8.9 \pm 0.4^{\circ}$ Mass splittings $\Delta m_{ij}^2 = m_i^2 - m_j^2$ $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{eV}^2$ $|\Delta m_{32}^2| = (2.44 \pm 0.06) \times 10^{-3} \text{eV}^2$

Mass

Remaining Questions

Sign of Δm_{32}^{2} still unknown:

- What is the ordering of the neutrino masses?
- What are the absolute neutrino masses?

Value of δ_{CP} unknown:

- If not equal to 0:
 - CP violation in the neutrino sector
 - Difference in oscillation probabilities for $\nu_{\mu} \rightarrow \nu_{e}$ vs $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$

Exact size of the other oscillation parameters:

• Is θ_{23} maximal (45°)?

$$P_{
u_a o
u_b}(L,E) = \left| \sum_{j,k} U^*_{aj} U_{bj} U_{ak} U^*_{bk} e^{-i rac{\Delta m^2_{jk}L}{2E}}
ight|$$

The T2K Experiment

T2K is a long-baseline neutrino experiment with a 600 MeV narrow band muon neutrino beam

- Detectors 2.5° off axis from neutrino beam
- Near detector at 280 m from beam source
- Far detector 295 km from source Neutrino energy spectrum tuned to hit oscillation maximum at far detector

$$P_{\nu_{a} \to \nu_{b}}(L, E) = \left| \sum_{j,k} U_{aj}^{*} U_{bj} U_{ak} U_{bk}^{*} e^{-i \frac{\Delta m_{jk}^{2} L}{2E}} \right|$$

The Off-Axis Beam

30 GeV proton beam situated at J-PARC

- Protons collide with target, producing pions and other mesons
- These decay to neutrinos
- Can run in neutrino or antineutrino mode

Neutrino Interactions at T2K

T2K looks for final-state leptons from chargedcurrent interactions.

- Identified via topology at both near and far detectors
- Important for both cross-section and oscillation analyses

Cross-sections not well measured – need to use near detector to normalize.

Charged-current quasielastic

Resonant

Coherent

The Near Detectors at 280m

Off-axis from beam at 2.5° and 280 meters from neutrino production target.

• Provides improved constraints on flux and cross-section models.

Able to differentiate between neutrino and antineutrino events:

- 0.2 T magnetic field
- Constrains neutrino background for antineutrino oscillation analysis.

The Far Detector at Super-Kamiokande

50 kton water Cherenkov detector:

• 22.5 kton fiducial volume Provides T2K event selection. Good muon/electron separation. Cannot separate v/v on an event by event basis:

- No charge ID
- No magnetic field

Selection at SK

µ-like

- Single reconstructed muon-like ring
- $P_{\mu} > 200 \text{ MeV/c}$
- One or less decay electrons

e-like

- Single reconstructed electron-like ring, with E_{visible} > 100 MeV
- Reconstructed E_{neutrino} <1250 MeV
- No decay electrons
- Not π_0 -like

Event displays from Monte Carlo

Oscillation Analysis Structure

T2K systematic uncertainty (Run5-6 $\bar{\nu}_{\mu}$ disappearance)

The ND280 Fit allows reduction of common systematics from 9% to 3%.

Not all cross-section uncertainties can be reduced:

- Different targets in the current ND280 (carbon) and SK (water) analyses
- ND280 analysis improvements will aim to reduce this SK-only cross-section uncertainty

		w/o ND measurement	w/ ND measurement
v flux and cross section	flux	7.1%	3.5 %
	cross section cmn to ND280	5.8%	1.4 %
	(flux) $ imes$ (cross section cmn to ND280)	9.2%	3.4 %
	cross section (SK only)	10.0 %	
	total	13.0%	10.1%
Final or Secondary Hadronic Interaction		2.1%	
Super-K detector		3.8%	
total		14.4%	11.6%

Fractional error on number-of-event prediction

Joint v_{μ} Disappearance/ v_{e} Appearance Result

Fitting both the T2K ν_{μ} and ν_{e} results simultaneously:

Without reactor constraints:

- World best precision for $sin^{2}(\theta_{23})$, maximal mixing
- With reactor constraints
 - Constraints on $\boldsymbol{\delta}_{_{CP}}$

$\bar{\nu}_{\mu}$ Disappearance Results

- 4.01 x 10²⁰ protons on target in antineutrino mode.
- 34 μ -like events seen
- Spectrum shows clear evidence of oscillation.

$$\sin^2(\bar{\theta}_{23}) = 0.45^{+0.19}_{-0.07}$$
$$|\Delta \bar{m}_{32}^2| = 2.51^{+0.29}_{-0.26} \times 10^{-3} \text{eV}^2$$

Result consistent with :

- MINOS results
- T2K neutrino fit results for v_{μ} disappearance
- Maximal mixing

$\overline{\nu}_{e}$ Appearance Results

Introduces a discrete parameter β $\beta = 0$: no $\overline{\nu_e}$ appearance $\beta = 1$: nominal $\overline{\nu_e}$ appearance Low statistics for $\overline{\nu_e}$ appearance: 3 events seen so far

- Cannot distinguish between hypotheses at these statistics
- Need at least 2x current protons on target

	$\delta_{CP} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = +\pi/2$
Sig $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$	1.961	2.636	3.288
Bkg $\nu_{\mu} \rightarrow \nu_{e}$	0.592	0.505	0.389
Bkg NC	0.349	0.349	0.349
Bkg other	0.826	0.826	0.826
Total	3.729	4.315	4.851

Conclusions

So far T2K has analyzed data from:

- 4.01 x 10²⁰ protons on target in antineutrino mode
- $7.0 \ge 10^{20}$ protons on target in neutrino mode Muon anti-neutrino disappearance results
 - Consistent with previous T2K ν_{μ} disappearance and MINOS ν_{μ} disappearance

Electron anti-neutrino appearance results

- 3 events observed so far
- Statistics too low to differentiate between no- $\overline{v_{e}}$ appearance and $\overline{v_{e}}$ appearance hypotheses

T2K is currently taking more antineutrino data

Upcoming analyses:

- Including water target selection in the near detector constraint
- Full joint neutrino-antineutrino appearance and disappearance fit

Additional Slides

Event Selection at ND280

Find highest momentum muon-like track in event

• Use charge identification to separate neutrino and anti-neutrino Event topology determined by number of additional tagged pions

- Neutrino mode samples are split in 0 pi, 1 pi and N-pion topologies
- Antineutrino mode samples split into 1-track (no additional tracks) and multi-track events

We select both neutrino and antineutrino events in antineutrino beam mode to constrain the neutrino background

Recent Cross-section Results

- Measurement of the muon neutrino CCQE cross section with ND280 at T2K *Phys. Rev. D 92, 112003 (2015)*
- Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi0 detector *Phys. Rev. D 91, 112010 (2015)*
- Measurement of the muon neutrino charged current quasi-elastic cross-section on carbon with the T2K on-axis neutrino beam *Phys. Rev. D 91, 112002 (2015)*
- Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3 GeV with the T2K INGRID detector Accepted by PRD (*arXiv:1509.06940*)
- Measurement of double-differential muon neutrino chargedcurrent interactions on C8H8 without pions in the final state using the T2K off-axis beam Submitted to journal (*arXiv:1602.03652*)

Future Sensitivity on δ_{CP} at T2K

T2K sensitivity to δ_{CP} at full statistics (7.8 x 10²¹ protons on target)

- Ongoing studies to find best neutrino/antineutrino running strategy to achieve best constraints
- 3σ sensitivity possible by end of T2K if $\delta_{_{CP}}$ is maximal

Plots shown assume 1:1 v:v running at T2K Enhanced sensitivity from joint T2K + Nova fit

• Joint fit can reach 90% sensitivity to $\delta_{CP} \neq 0$