Status of Direct Dark Matter Search with XENON100 and XENON1T

Constanze Hasterok

On behalf of the XENON collaboration

18.03.2016

Indications for Dark Matter

- Galactic Rotation Curves
- Gravitational Lensing
- Bullet Cluster
- Cosmic Microwave Background (CMB)
- Structure Formation
- etc.

Weakly interacting massive particles (WIMPs) are a favoured model for dark matter!

Bullet Cluster, Gravitational Lensing NASA, Chandra x-ray observatory

CMB, arXiv:1303.5062

Constanze Hasterok (MPIK)

Why using Xenon for Direct Detection?

- high mass number: A ~ 131
- high stopping power: $\rho \simeq 3 \text{ g} \cdot \text{cm}^{-3}$
- low intrinsic radioactivity
- ¹²⁹Xe and ¹³¹Xe have non-zero nuclear spin → sensitive to spin-dependent interactions
- possible to produce in large quantities

$$\frac{\mathrm{d}R_{\mathrm{A}}}{\mathrm{d}E_{\mathrm{nr}}} = \mathbf{A}^{2} \cdot \mathbf{F}_{\mathrm{A}}^{2}(\mathbf{E}) \cdot \frac{\sigma_{\mathrm{p}} \cdot \rho_{\chi}}{2 \cdot m_{\chi} \cdot \mu_{\mathrm{p}}^{2}} \cdot \int_{v \ge v_{\textit{min}}} \mathrm{d}^{3}v \frac{f(\mathbf{v}, t)}{v}$$

The Detection Principle

The XENON Experiment

Collaboration of 21 institutes in 10 countries

Hosted by the Laboratori Nazionali del Gran Sasso (LNGS)

History of the XENON Experiment

	XENON10	XENON100	XENON1T
Total xenon mass:	25 kg	161 kg	3.5 t
Runtime:	2005-2007	2008-201x	2016-201×
Exclusion limit: (σ_{SI})	8.8 · 10 ⁻⁴⁴ cm ² @ 100 GeV (2007) <i>PRL 100 021303</i>	2.0 · 10 ⁻⁴⁵ cm ² @ 55 GeV (2012) PRL 109 181301	1.6 · 10 ⁻⁴⁷ cm ² @ 50 GeV (expected in 2018) arXiv:1512.07501

XENON100 Results

Limits on WIMP-nucleon interactions

Recent XENON100 Results: Exclusion of Event Rate Modulation in ER

- no particular period favoured at any significant level!
- fixing period to 1 year \Rightarrow best fit for phase: 112 \pm 15 days
 - > phase of standard DM halo disfavoured @ 2.5σ
 - phase and amplitude of DAMA disfavoured @ 4.8σ

Constanze Hasterok (MPIK)

Recent XENON100 Results: Exclusion of Leptophillic Dark Matter Models

- DAMA Bkg: 1019 (keV·t·d)⁻¹ XENON100 Bkg: 5.3 (keV·t·d)⁻¹
- DAMA modulation: (11.2 ± 1.2) (keV·t·d)⁻¹
- assuming full modulation of DAMA to be caused by DM ⇒ transfering DAMA spectrum into XENON100 spectrum

- excluding leptophillic DM @ 4.5 σ
- excluding mirror DM @ 3.6σ

Current XENON100 Activites

Using a uniquely understood device for:

- tests of radon removal techniques for XENON1T
- tests of new calibration sources for XENON1T: ²²⁰Rn, ^{83m}Kr, Tritium
- proof of principle: NR below detector threshold (6.6 keV_{nr}) contribute to event rate due to Poisson fluctuations!
 - YBe source: ${}^{9}Be(\gamma,n){}^{8}Be$
 - $E_{\rm nr}^{\rm max} = 4.5 \, {\rm keV}_{nr}$

 \Rightarrow justifies limits for WIMP masses with recoil energies below detector threshold

XENON1T - The next Generation

- $3.5 t \text{ xenon} \Rightarrow 2.0 t \text{ target mass}$
- $\bullet\,$ TPC with $\sim 1\,\text{m}$ drift length, $\sim 1\,\text{kV/cm}$ drift field
- 248 PMTs (Hamamatsu R11410-21) Eur.Phys.J. C75 (2015) 11, 546
- 10 m water tank for neutron shielding & active muon veto JINST 9 (2014) 11006
- background after 99.75% ER rejection: 2.08 events/(t·y) (in S1 range (3,70) PE) arXiv:1512.07501, submitted to JCAP

XENON1T - Commissioning

- full inventory of 3.5 tons in LXe storage vessel
- TPC assembled and installed
- muon veto systems tested (water tank filled)
- currently DAQ commissioning and PMT calibration

 \Rightarrow Data taking soon!

First LED Light!

Constanze Hasterok (MPIK)

XENON1T - Gas Purity Control

X E N Derk Matter

Electronegative impurities (e.g. $O_2)$ can capture electrons Radioactive impurities ($^{85}{\rm Kr})$ contribute to background rate

- gas chomatography used to verify xenon gas purity
- calibration by standard gas mixture
 → peak area proportional to
 amount of gas
- each xenon bottle measured before filling into storage vessel

Total imp	urities of	xenon invento	ory [ppm]			
0.06 < 0.25 < 0.99 <	$\begin{array}{c} \textbf{H}_2\\ \textbf{O}_2 \textbf{+} \textbf{Ar}\\ \textbf{N}_2 \end{array}$	$< 0.10 \\ < 0.55 \\ < 1.65$	0.003 < 0.00 < 0.00 <	Kr CH₄ CO	< 0.025 < 0.02 < 0.21	
Constanze Ha	sterok (MPIK)	Status of XEN	ION100 & XENON1T		18.03.2016	13 / 15

XENON1T - Background Reduction

Constanze Hasterok (MPIK)

Summary and Outlook

X E N O N Derk Matter Project

- XENON100 excludes DAMA annual modulation and leptophillic DM models and
- XENON100 still in Operation: Tests for XENON1T
- XENON1T commissioning almost completed ⇒ first results this year!

Future: XENONnT Upgrade

- only TPC & inner cryostat have to be exchanged
- $\bullet~\sim7.5\,t$ total xenon mass
- ullet ~ 200 PMTs additionally required
- sensitivity improves by one order of magnitude!

Backup Slides

XENON100 Results - Annual Modulation

ModulationRate :
$$f(t) = \epsilon(t) \left(C + Kt + A \cdot \cos\left(2\pi \frac{(t-\phi)}{P}\right) \right)$$

Constanze Hasterok (MPIK)

Electronic Recoil Background in (1 – 12) keV

Source	Background $[y^{-1}]$	Fraction [%]	
Materials	29 ± 3	4.1	
²²² Rn	620 ± 60	85.4	
⁸⁵ Kr	31 ± 6	4.3	
¹³⁶ Xe	9 ± 4	1.4	
Solar Neutrinos	36 ± 1	4.9	

Nuclear Recoil Background in (4-50) keV

Source	Background $[y^{-1}]$	Fraction [%]	
radiogenic neutrons	0.55	48.2	
muon induced neutrons	< 0.01	0	
coherent neutrino scattering	0.59	51.8	

Constanze H	lasterok ((MPIK)
-------------	------------	--------

XENON1T - Background

arXiv:1512.07501, submitted to JCAP

Energy Scales

arXiv:1512.07501, submitted to JCAP

