Top Quark Physics at the Tevatron

Christian Schwanenberger HELMHOLTZ ASSOCIATION

51st Rencontres de Moriond EW 15 March, 2016

on behalf of

The Tevatron pp Collider at Fermilab

HELMHOLTZ

ASSOCIATION

 needed as isospin partner of bottom quark

discovered in 1995 by CDF and DØ:

m_{top} ~ gold nucleus

 large coupling to Higgs boson ~ 1: important role in electroweak symmetry breaking?

short lifetime: τ ~ 5 · 10⁻²⁵s ≪ Λ⁻¹_{QCD}:
 decays before fragmenting
 → observe "naked" quark

Is the top quark the particle as predicted by the SM?

HELMHOLTZ

H

Top Quark Pair Production

Top Quark Pair Signatures

/ HELMHOLTZ

ASSOCIATION

tt production density matrix

Top quark properties

- systematic analysis of the top quark pair production mechanism
- high precision measurements
- high sensitivity to new physics
- new and complementary to the LHC

HELMHOLTZ

ASSOCIATION

tt production density matrix

 $|M|^2 \propto A + \mathbf{B}^+ \cdot \mathbf{s}_1 + \mathbf{B}^- \cdot \mathbf{s}_2 + C_{ij} s_{1i} s_{2j}$ $q(p_1) + \bar{q}(p_2) \to t(k_1, s_1) + \bar{t}(k_2, s_2)$ Bernreuther, Heisler, Si, JHEP 1512, 026 (2015)

• spin information is contained in decay products

tt production density matrix

(e.g. p^t_T distribution etc.)

- test of QCD predictions
- search for new physics

Lepton+Jets Channel

scalar sum of transverse momenta of jets and lepton

Multivariate analysis

HELMHOLTZ

ASSOCIATION

Dilepton Channel

tt cross section summary

systematic uncertainties:

DESY

- b-tagging
- luminosity

Extraction of top pole mass

quantum field theoretically well defined mass parameter!

→ in agreement with world average of MC mass of 173.34±0.76 GeV

DO Note 6453-CONF

$$m_t = 169.5^{+3.3}_{-3.4} \,(\text{tot.}) \,\text{GeV} \pm 1.9\%$$

Searches for new physics

ASSOCIATION

tt production density matrix

HELMHOLTZ

ASSOCIATION

Moriond EW

Longitudinal and transverse polarisation

Forward-backward tt asymmetry

complementary to LHC

<u>BSM</u>

DESY

Asymmetry and polarisation

Top Quark Physics at Tevatron

ASSOCIATION

- Christian Schwanenberger -

Moriond EW

DESY

tt FB asymmetry

HELMHOLTZ

ASSOCIATION

Moriond EW

Summary: tt FB asymmetry

tt production density matrix

 $|M|^2 \propto A + \mathbf{B}^+ \cdot \mathbf{s}_1 + \mathbf{B}^- \cdot \mathbf{s}_2 + C_{ij}s_{1i}s_{2j}$

spin correlation

Spin correlation

Tevatron

- dominated by $q\bar{q}$ annihilation
- tt pairs close to the threshold

- dominated by gg fusion
- tt pairs far off the threshold

complementary between Tevatron and LHC

HELMHOLTZ

- Christian Schwanenberger -

LHC

DESY

New physics impact on spin correlations

- important test of SM and sensitive search for physics beyond
- analyse the whole chain of top pair production and top decay

→ SM spin correlation

\rightarrow no spin correlation

HELMHOLTZ

ASSOCIATION

Measurement of Spin Correlation Strength

Top Quark Physics at Tevatron

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

Conclusions

• Tevatron had very successful top quark analysis program

- observation
- development of analysis techniques
- high precision measurements
- searches for new physics
- legacy results on the full dataset complement LHC
 - different centre-of-mass energy
 - different initial state pp
- Presented a systematic analysis of top quark properties in pair production
- → top quark as predicted by SM

→ LHC offers new era of high precision and new phenomena discoveries

HELMHOLTZ

Backup

Dilepton top mass at the Tevatron

ASSOCIATION

Top mass at the LHC

What mass do we measure?

$$\mathcal{L} = \dots - \overline{\psi} M \psi \left(1 + \frac{H}{\nu} \right) \dots$$
• LO QCD: free parameter
$$\mathbf{m}_{top}$$

• NLO QCD: dependent on the renormalisation scale M

"Bare parameters of QCD: gs, mu, md, ms, mc, mc, mc Renormalised parameters of QCD: gs (M), mu (M), md (M), mg (M), mg (M), mg (M) (M, (M)

the concept of quark mass is convention-dependent!

HELMHOLTZ

What mass do we need?

HELMHOLTZ

ASSOCIATION

DESY

Search for W' production

Top Quark Physics at Tevatron

ASSOCIATION

FB asymmetry of bb production

$$A_{\rm FB} = \frac{N(\Delta y_b > 0) - N(\Delta y_b < 0)}{N(\Delta y_b > 0) + N(\Delta y_b < 0)}$$

$$\frac{q}{\overline{q}}$$

arXiv:1601.06526

- Christian Schwanenberger -

DESY

FB asymmetry of bb production

Top Quark Physics at Tevatron

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

FB asymmetry of bb production

Top Quark Physics at Tevatron

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

Charge Asymmetry

ASSOCIATION

DESY

Forward Backward and Leptonic Asymmetry

- measured asymmetries in l+jets (arXiv:1107.4995) and dilepton (arXiv:1207.0364) channel
 Forward-Backward Top Asymmetry, %
 - unfolded A_{FB} = 19.6% in l+jets agrees within 2.4 SD with MC@NLO prediction of 5.0%
 - combined lepton based asymmetry from 1+jets and dilepton: $A_{\mu\nu}^{-1} = (11.8 \pm 3.2) \%$

agrees within 2.2 SD with prediction of 4.7%

- however:
 - all results dominated by statistical uncertainty
 - ongoing work for improved predictions
- many models predict very different values for A_{FB} and A_{FB}^{-1}
 - → new results with full data set (~9 fb⁻¹) in l+jets and dilepton in preparation

tt production density matrix

 $q(p_1) + \bar{q}(p_2) \rightarrow t(k_1, s_1) + \bar{t}(k_2, s_2)$ determines cross section and distributions independent of top spin (e.g. p^{t} distribution etc.) $|M|^2 \propto A + \mathbf{B}^+ \cdot \mathbf{s}_1 + \mathbf{B}^- \cdot \mathbf{s}_2 + C_{ij} s_{1i} s_{2j}$ $b_3^{\pm} \neq 0$: only in NLO QCD, "T"-odd b_1^{\pm} , $b_2^{\pm} \neq 0$: P-violation (absorptive parts) (=0 in LO QCD) ATLAS-CONF-2013-101 arXiv:1307.6511 [hep-ex] 🗡 c1, c2, c3, c4: C-even, P-even in LO QCD $= b_1^{\pm} \hat{p}_i + b_2^{\pm} \hat{k}_i + b_3^{\pm} n_i$ \tilde{B}_i^{\pm} c₅, c₆: P-odd, CP-odd \tilde{C}_{ij} $= c_1 \delta_{ij} + c_2 \hat{p}_i \hat{p}_j + c_3 \hat{k}_i \hat{k}_j$ ≠0 only in BSM $+c_4(\hat{p}_i\hat{k}_j+\hat{k}_i\hat{p}_j)+c_5\epsilon^{ijl}\hat{p}_l+c_6\epsilon^{ijl}\hat{k}_l$

→ systematic analysis of top quark properties

Top Pair Spin Correlation

• measure tt spin correlation: consistent with SM prediction for a spin 1/2 particle?

Moriond EW

DESY

Polarisation power

HELMHOLTZ

ASSOCIATION

Spin correlation strength

Tevatron

- interpolate between beam and helicity basis
- optimised "off-diagonal" basis

$$\tan \omega = \sqrt{(1-\beta^2)} \tan \theta$$

NLO QCD: A= 0.78

Bernreuther, Brandenburg, Si, Uwer, Nucl. Phys. B690, 81 (2004)

- there is no "optimal" basis for gg fusion on an event-by-event basis
- maximal basis

NLO QCD: A = 0.44

Uwer, Phys. Lett., B609:271-276, 2005

- Christian Schwanenberger -

Moriond EW

DESY

New physics impact on spin correlations

- important test of SM and sensitive search for physics beyond
- analyse the whole chain of top pair production and top decay

Matrix Element Method

DESY

Matrix Element

G. Mahlon and S. J. Parke, Phys. Rev. D 53, 4886 (1995) Phys. Lett. B 411, 173(1997)

H=uncorrelated

$$\sum |\mathcal{M}|^2 = \frac{g_s^4}{9} F\overline{F} \left(2 - \beta^2 s_{qt}^2\right)/2$$

$$\beta: \text{ velocity of top in t} \overline{t}$$

$$s_{qt}: \text{ sine between initial}$$

kinematics of top and anti-top decay

rest frame al quark and top

Matrix Element

β: velocity of top in tt rest frame s_{qt}: sine between initial quark and top c_{qt}: cosine between initial quark and top G. Mahlon and S. J. Parke, Phys. Rev. D 53, 4886 (1995) Phys. Lett. B 411, 173(1997)

$$\sum |\mathcal{M}|^2 = \frac{g_s^4}{9} F\overline{F} \left[\left(2 - \beta^2 s_{qt}^2 \right) - \Delta \right]$$

H=correlated matics of top

kinematics of top and anti-top decay

$$\Delta = \frac{(1 - c_{\overline{\ell}q}c_{\ell\overline{q}}) - \beta(c_{\ell\overline{t}} + c_{\overline{\ell}t}) + \beta c_{qt}(c_{\overline{\ell}q} + c_{\ell\overline{q}}) + \frac{1}{2}\beta^2 s_{qt}^2(1 - c_{\overline{\ell}\ell})}{\gamma^2(1 - \beta c_{\overline{\ell}t})(1 - \beta c_{\ell\overline{t}})}$$

First Evidence for Spin Correlation

MEs: per event \leftrightarrow spin correlation: ensemble of events

Exclusion Limits

Single Top Quark Production

direct measurement of |V_{th}|

⇒ important to measure all channels separately to search for new physics BUT: do not separate Wt in higher orders – an unphysical question!

DESY

Recontructed Top Mass

Top Quark Physics at Tevatron

HELMHOLTZ

ASSOCIATION

- Christian Schwanenberger -

Multivariate Analyses

s+t channel observed by CDF and D0 in 2009 important step to establish MVA techniques

DESY

50

HELMHOLTZ **Top Quark Physics at Tevatron** ASSOCIATION

- Christian Schwanenberger -

s-channel Production

Phys. Rev. Lett. 112, 231803 (2014)

• Tevatron: combine individual discriminants including all correlations

Single channel cross sections

→ all production modes observed!

- Christian Schwanenberger -

DESY

Top Quark Pole Mass

Spin correlations for "Stealth" Stop

- Christian Schwanenberger -

Stop searches

using a "standard candle" for complementary exclusion

/ HELMHOLTZ

ASSOCIATION

PRL 74, 2632 (1995)

PRL 74, 2626 (1995)

1995, CDF and DØ experiments, Fermilab

HELMHOLTZ

ASSOCIATION

March 2nd, 1995:

First announcement of Top Discovery in public seminar at Fermilab

pants tim

1995, CDF and DØ experiments, Fermilab

1995, CDF and DØ experiments, Fermilab

HELMHOLTZ

DESY

ASSOCIATION

Moriond EW

ASSOCIATION

June 3rd, 2015: First Collisions @ 13 TeV

HELMHOLTZ **Top Quark Physics at Tevatron** ASSOCIATION

- Christian Schwanenberger -