Recent Nucleon Decay Searches at the Super-Kamiokande Experiment

Volodymyr Takhistov

(Univerisity of California, Irvine)

for the Super-Kamiokande Collaboration

Moriond EW 2016 @ La Thuile, Italy

Motivation

- Baryon number (B) global accidental symmetry of Standard Model (SM)
 - → lightest baryon (proton) stable
- Many arguments + reductionism suggest a more unifying theory underlying the SM
- Grand Unification (GUT) unites SM gauge groups

 $G \supset SU(3)_C \otimes SU(2)_W \otimes U(1)_Y$

- \rightarrow coupling unification, charge quantization, etc.
- \rightarrow leptons + quarks in same GUT representation \rightarrow nucleon decay (explicit B)

Motivation

- **Baryon number** (B) global accidental symmetry of Standard Model (SM)
 - \rightarrow lightest baryon (proton) stable
- Sakharov's conditions for baryogenesis require B [Sakharov (1967)]
- Many arguments + reductionism suggest a more unifying theory underlying the SM
- Proton decay is a signature prediction of GUTs and a unique test of $O(10^{14-16})$ GeV scales
- Lifetime predictions $\mathcal{O}(10^{30+})$ years ... how to observe?

→ look long at 1 proton or look at very many protons

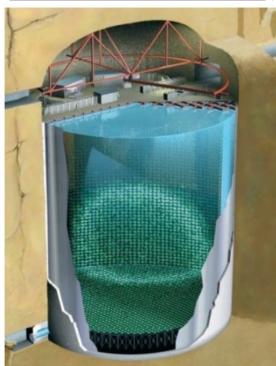
accelerator can't reach

Motivation

- **Baryon number** (B) global accidental symmetry of Standard Model (SM)
 - \rightarrow lightest baryon (proton) stable
- Many arguments + reductionism suggest a more unifying theory underlying the SM
- <u>Grand Unification (GUT)</u> unites SM gauge groups \rightarrow coupling unification, charge quantization, etc. \rightarrow leptons + quarks in same GUT representation \rightarrow nucleon decay (explicit \mathbb{B})
- Proton decay is a signature prediction of GUTs and a unique test of $O(10^{14-16})$ GeV scales
- Lifetime predictions $\mathcal{O}(10^{30+})$ years ... how to observe?

→ look long at 1 proton or look at very many protons

accelerator can't reach


- Large water Cherenkov detectors → lots of protons and "cheap"
- State of the art experiment → <u>Super-Kamiokande</u>

The Super-Kamiokande Experiment

- <u>Super-Kamiokande</u>
 - \rightarrow 22.5 kTon fiducial volume
 - → Inner (11k PMTs, 40% coverage) and outer (2k PMTs) detectors
 - → 4 run periods: SK-I (1996 2001) SK-II (2003 - 2005): accident, $\frac{1}{2}$ PMT coverage SK-III (2006 - 2008): restore PMT coverage SK-IV (2008 - now): upgraded electronics

The Super-Kamiokande Experiment

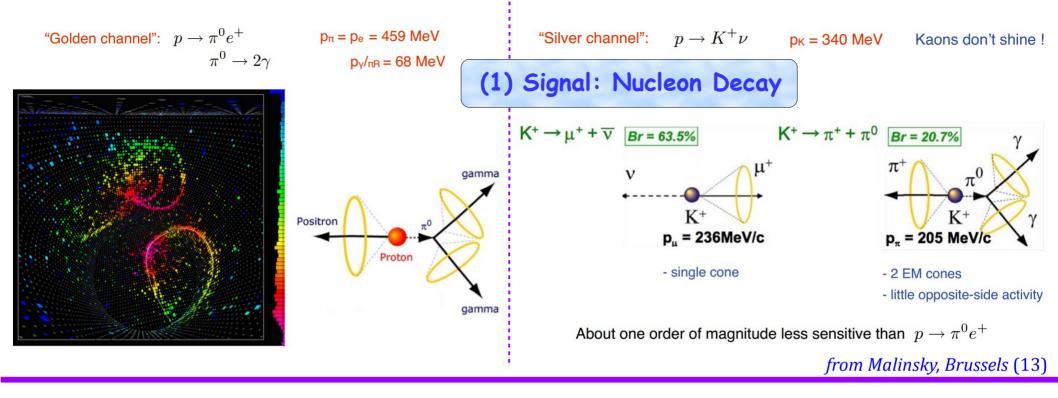
- <u>Super-Kamiokande</u>:
 - \rightarrow 22.5 kTon fiducial volume
 - → Inner (11k PMTs, 40% coverage) and outer (2k PMTs) detectors
 - → 4 run periods: SK-I (1996 2001) SK-II (2003 - 2005): accident, ½ PMT coverage SK-III (2006 - 2008): restore PMT coverage SK-IV (2008 - now): upgraded electronics
- <u>Amazing multipurpose physics detector</u> (range: MeV TeV)
 - \rightarrow neutrino oscillations, Lorentz invariance, sterile neutrinos

 \rightarrow nucleon decay (PDK)

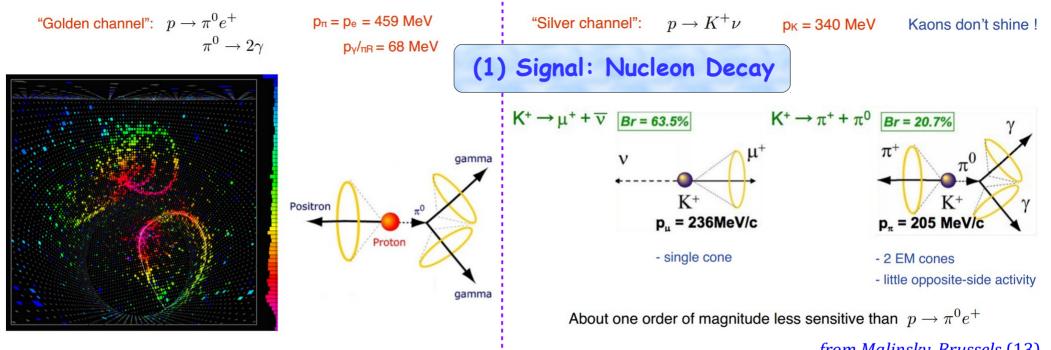
- \rightarrow solar neutrinos, day/night effect, supernovae relic neutrinos
- \rightarrow indirect dark matter searches
- \rightarrow more exotic searches (monopoles, etc.)

(Hida, Gifu Prefecture, Japan)

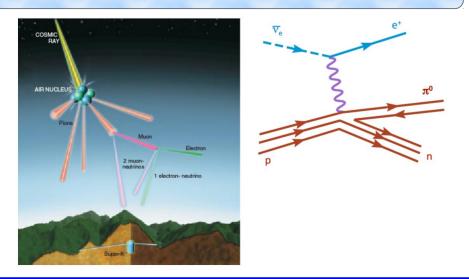
this talk


The Super-Kamiokande Experiment

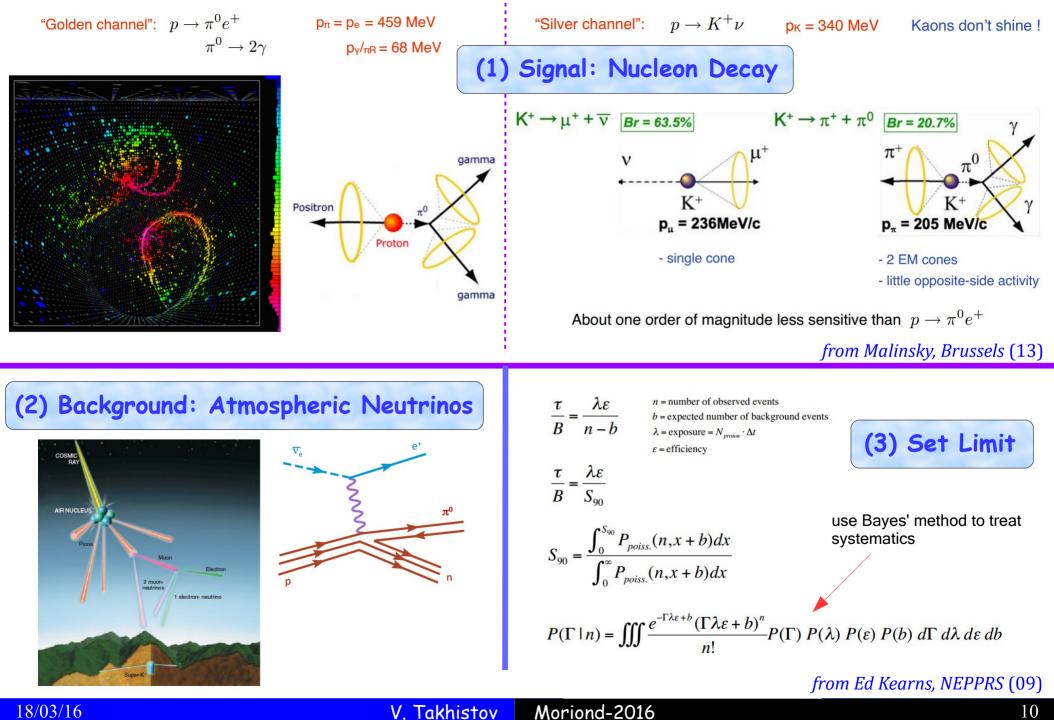
- <u>Super-Kamiokande</u>:
 - \rightarrow 22.5 kTon fiducial volume
 - → Inner (11k PMTs, 40% coverage) and outer (2k PMTs) detectors
 - → 4 run periods: SK-I (1996 2001) SK-II (2003 - 2005): accident, ½ PMT coverage SK-III (2006 - 2008): restore PMT coverage SK-IV (2008 - now): upgraded electronics
- <u>Amazing multipurpose physics detector</u> (range: MeV TeV)
 - \rightarrow neutrino oscillations, Lorentz invariance, sterile neutrinos
 - \rightarrow nucleon decay (PDK)
- <u>this talk</u>
- \rightarrow solar neutrinos, day/night effect, supernovae relic neutrinos
- \rightarrow indirect dark matter searches
- \rightarrow more exotic searches (monopoles, etc.)
- Future of Super-K


SK-GD (201?): add gadolinium (Approved) [Beacom, Vagins (2004)]

Detecting Nucleon Decay at Super-K



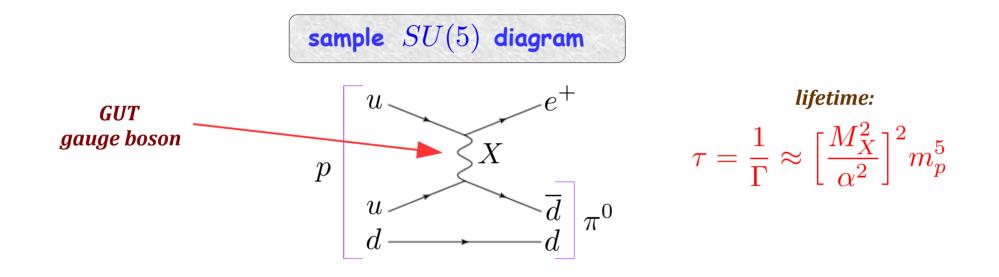
Detecting Nucleon Decay at Super-K


from Malinsky, Brussels (13)

(2) Background: Atmospheric Neutrinos

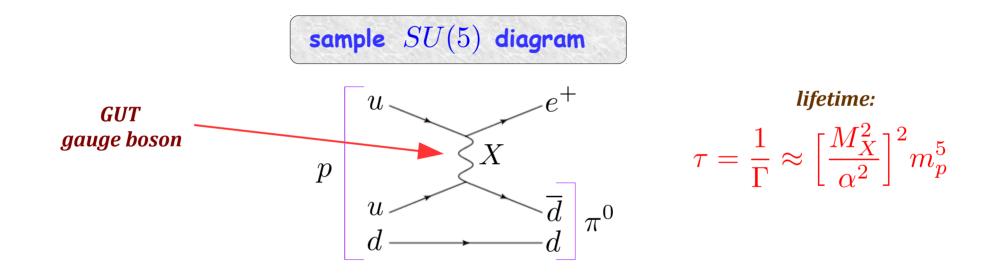
from Ed Kearns, NEPPRS (09)

Detecting Nucleon Decay at Super-K



18/03/16

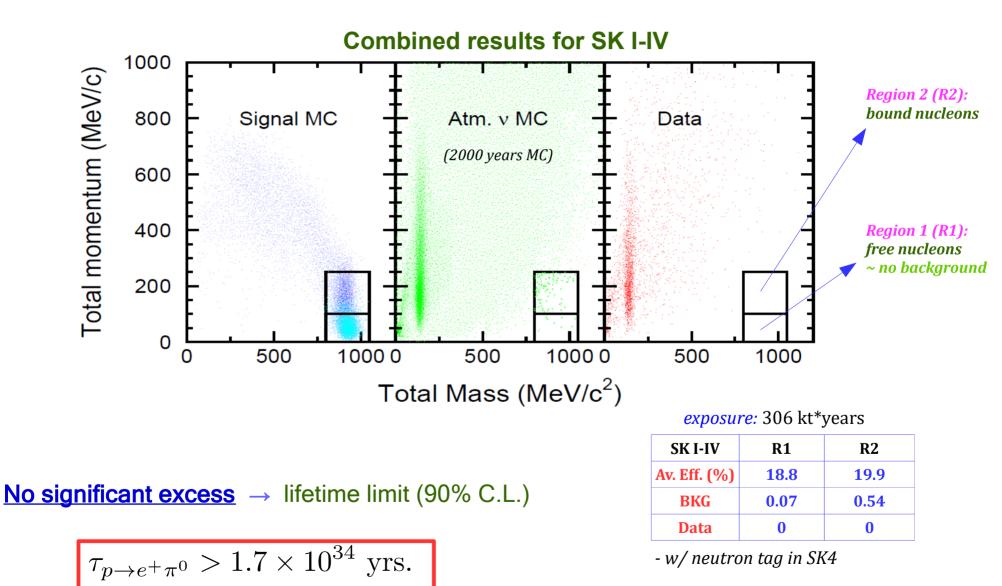
10


Benchmark GUT mode: $\mathbf{p} ightarrow \mathbf{e}^+ \pi^{\mathbf{0}}$

- Motivation: dominant decay channel in most GUTs [Georgi, Glashow (1974)] \rightarrow typical predictions $\tau \sim 10^{29-36}$ yrs
 - ightarrow ruled out minimal SU(5) [IMB-3, Kamiokande, Super-K]

Benchmark GUT mode: $\mathbf{p} ightarrow \mathbf{e}^+ \pi^{\mathbf{0}}$

- Motivation: dominant decay channel in most GUTs [Georgi, Glashow (1974)] \rightarrow typical predictions $\tau \sim 10^{29-36}$ yrs
 - ightarrow ruled out minimal SU(5) [IMB-3, Kamiokande, Super-K]

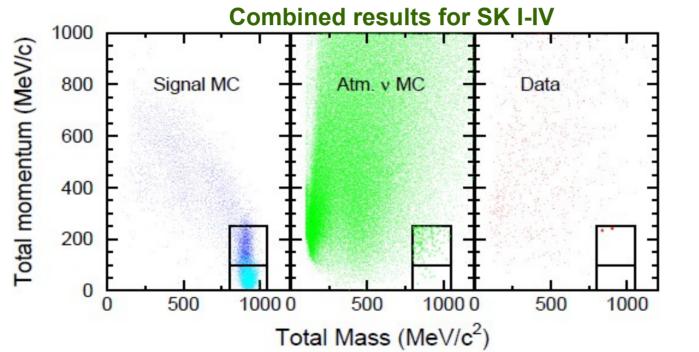

• Search strategy: $e^+, \pi^0(\rightarrow \gamma + \gamma)$ are visible

→ reconstruct invariant mass and momentum of proton

Benchmark GUT mode: $\mathbf{p} \rightarrow \mathbf{e}^+ \pi^0$

• <u>Results</u>:

[Super-K, preliminary]



Benchmark GUT mode: $\mathbf{p} ightarrow \mu^+ \pi^0$

- <u>Motivation</u>: can be as dominant as $p \to e^+ \pi^0$ (e.g. flipped SU(5)) [Ellis, Nanopoulos, Walker (2002)]
- <u>Search strategy</u>: $\mu^+(\rightarrow e^+\nu\nu), \pi^0(\rightarrow \gamma + \gamma)$ all visible, reconstruct nucleon

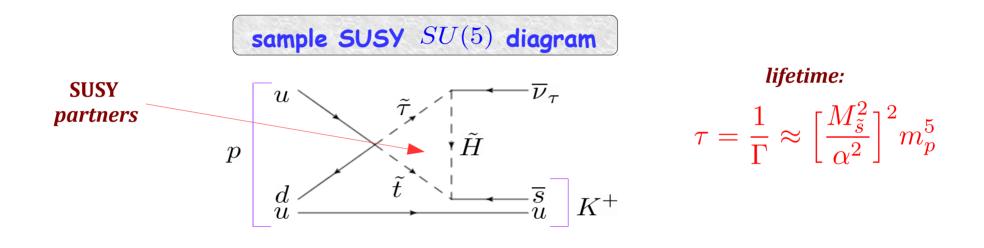
Benchmark GUT mode: $\mathbf{p} \rightarrow \mu^+ \pi^0$

- <u>Motivation</u>: can be as dominant as $p \to e^+ \pi^0$ (e.g. flipped SU(5)) [Ellis, Nanopoulos, Walker (2002)]
- <u>Search strategy</u>: $\mu^+(\to e^+\nu\nu), \pi^0(\to \gamma + \gamma)$ all visible, reconstruct nucleon
- <u>Results</u>:

[Super-K, preliminary]

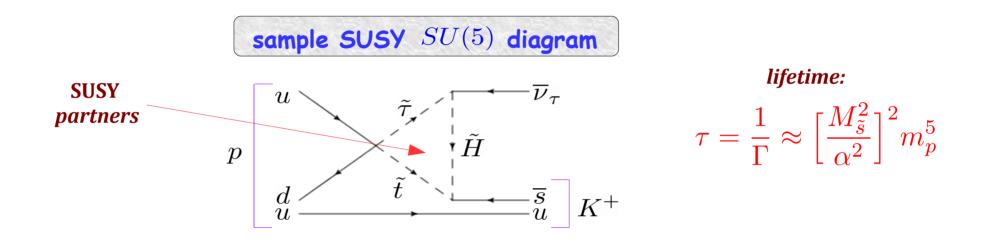
<i>exposure:</i> 306 kt*years					
SK I-IV	R1	R2			
Av. Eff (%)	17.9	16.7			
BKG	0.05	0.82			
Data	0	2			

- w/ neutron tag in SK4
- SK4 better decav-e detection


(details in Appendix)

- 2 events pass selection, consistent with background (Poisson prob. 23%, "eye scan")
- <u>No significant excess</u> → lifetime limit (90% C.L.)

$$\tau_{p \to \mu^+ \pi^0} > 7.8 \times 10^{33}$$
 yrs.


Benchmark SUSY GUT mode: $\mathbf{p} ightarrow \nu \mathbf{K}^+$

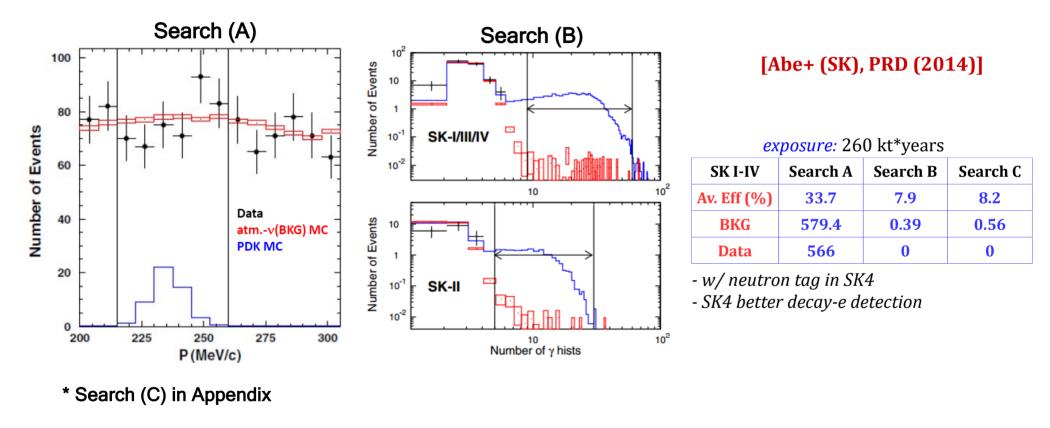
- Motivation: dominant decay in most SUSY GUTs [Weinberg (1982); Sakai, Yanagida (1982)] \rightarrow typical predictions $\tau \sim 10^{29-36}$ yrs
 - \rightarrow ruled out minimal (TeV-)SUSY SU(5) [Kobayashi+ (SK), PRD (2005)]

Benchmark SUSY GUT mode: $\mathbf{p} ightarrow \nu \mathbf{K}^+$

- Motivation: dominant decay in most SUSY GUTs [Weinberg (1982); Sakai, Yanagida (1982)] \rightarrow typical predictions $\tau \sim 10^{29-36}$ yrs
 - \rightarrow ruled out minimal (TeV-)SUSY SU(5) [Kobayashi+ (SK), PRD (2005)]

• Search strategy: $\nu, K^+(\rightarrow \mu^+ \nu, \pi^0 \pi^+)$ both invisible (K+ below threshold)

→ can't reconstruct proton, can do ...


Search (A) $(K^+ \to \mu^+ \nu)$ spectral fit to μ^+ momentum Search (B) $(K^+ \to \mu^+ \nu)$ tag γ from nuclear de-excitation Search (C) $(K^+ \to \pi^0 \pi^+)$ reconstruct pion from $\pi^0 \to \gamma \gamma$

Benchmark SUSY GUT mode: $\mathbf{p} ightarrow \nu \mathbf{K}^+$

Search (A) = spec. fit μ^+ Search (B) = prompt γ Search (C) = pions

Results:

Sample combined results for SK I-IV

• <u>No significant excess</u> \rightarrow lifetime limit (90% C.L.)

 $\tau_{p \to \nu K^+} > 6.6 \times 10^{33} \text{ yrs.}$

$\mathbf{n} - \overline{\mathbf{n}}$

• Motivation: $\Delta B = 2$ process

 \rightarrow parametrizes breaking scale of $U(1)_{B-L}$, can embed into GUT

→ natural connection w/ Majorana neutrinos (see-saw) + baryogenesis

[Babu, Mohapatra (2001); Mohapatra (2009); Kuzmin (1970)]

$$\sim 10^8 \text{ s.}$$

 $\sim 10^{32} \text{ yrs.}$ $\tau_{n-\overline{n}} = R \cdot \tau_{n-\overline{n}}^{vac.2}$ nuclear suppression $\sim 10^{23}$

→ test of intermediate scale physics

$$\mathcal{O}_{n-\overline{n}} \sim \frac{1}{M^5} (udd) (udd) \longrightarrow \tau_{n-\overline{n}}^{vac.} \sim 10^8 \text{ s.} \longrightarrow M \sim 100 \text{ TeV}$$

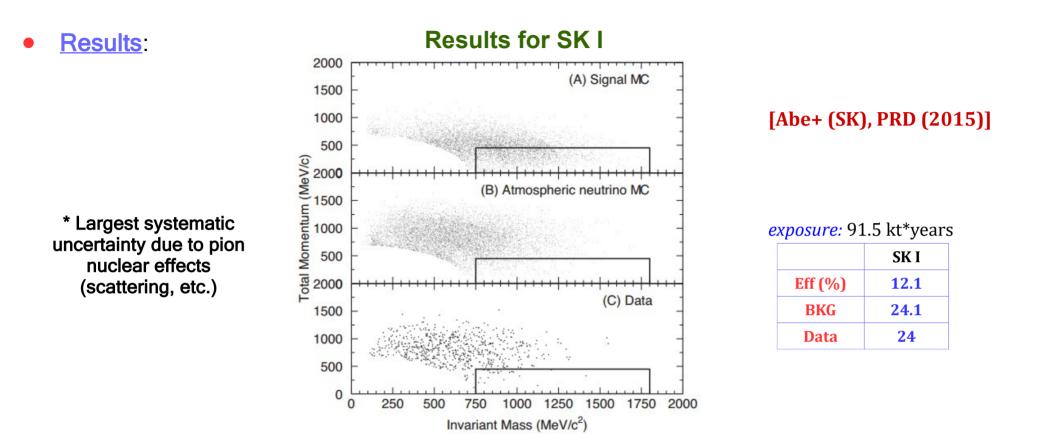
$n - \overline{n}$

• Motivation: $\Delta B = 2$ process

 \rightarrow parametrizes breaking scale of $U(1)_{B-L}$, can embed into GUT

→ natural connection w/ Majorana neutrinos (see-saw) + baryogenesis

[Babu, Mohapatra (2001); Mohapatra (2009); Kuzmin (1970)]


$$\sim 10^8 \text{ s.}$$

 $\sim 10^{32} \text{ yrs.}$ $\tau_{n-\overline{n}} = R \cdot \tau_{n-\overline{n}}^{vac.2}$ nuclear suppression $\sim 10^{23}$

→ test of intermediate scale physics

$$\mathcal{O}_{n-\overline{n}} \sim \frac{1}{M^5} (udd)(udd) \longrightarrow \begin{array}{c} \frac{current \ limit}{\tau_{n-\overline{n}}^{vac.} \sim 10^8 \ s.} \longrightarrow M \sim 100 \ TeV$$

		$\bar{n}+p$		$\bar{n}+n$	
•	<u>Search strategy</u> : \overline{n} is captured by nucleons	$\pi^+\pi^0$	1%	$\pi^+\pi^-$	2%
		$\pi^{+}2\pi^{0}$	8%	$2\pi^0$	1.5%
	\rightarrow look for pions from $\overline{n} + p, \overline{n} + n$	$\pi^{+}3\pi^{0}$	10%	$\pi^+\pi^-\pi^0$	6.5%
		$2\pi^{+}\pi^{-}\pi^{0}$	22%	$\pi^{+}\pi^{-}2\pi^{0}$	11%
	\rightarrow reconstruct "di-nucleon" invariant mass and momentum	$2\pi^{+}\pi^{-}2\pi$	0 36%	$\pi^{+}\pi^{-}3\pi^{0}$	28%
		$2\pi^+\pi^-2\omega$	16%	$2\pi^{+}2\pi^{-}$	7%
		$3\pi^{+}2\pi^{-}\pi$	0 7%	$2\pi^{+}2\pi^{-}\pi^{0}$	24%
				$\pi^+\pi^-\omega$	10%
				$2\pi^+ 2\pi^- 2\pi^0$	10%

$\mathbf{n} - \overline{\mathbf{n}}$

• No significant excess → lifetime limit (90% C.L.)

- $\tau_{n-\overline{n}} > 1.9 \times 10^{32}$ yrs.
- \rightarrow being redone for SK1-4 w/ boosted decision tree (BDT)
- \rightarrow same BDT technique as in recent SK dinucleon searches, with limits $\mathcal{O}(10^{32} \text{ yrs.})$

 $pp \to \pi^+\pi^+, np \to \pi^0\pi^+, nn \to \pi^0\pi^0$

[Gustafson+ (SK), PRD (2015)]

More Exotic Searches

- Motivation: large theory uncertainty requires broad search strategy
 - \rightarrow understand well 1-ring atm.-v background
 - \rightarrow do wide search of channels w/ 1-ring signature:

$$p \to e^+ \nu \nu, \quad p \to \mu^+ \nu \nu, \quad p \to e^+ X, \quad p \to \mu^+ X$$

$$np \to e^+ \nu, \quad np \to \mu^+ \nu, \quad np \to \tau^+ \nu, \quad n \to \gamma \nu$$

→ trilepton decays arise in Pati-Salam models, in some $\tau_{p \to e(\mu)\nu\nu} \sim 10^{32\pm1} \text{yrs.}$ [Pati, Salam (1973)] → dinucleon decays arise in extended Higgs models [Arnold, Fornal, Wise (2013)]

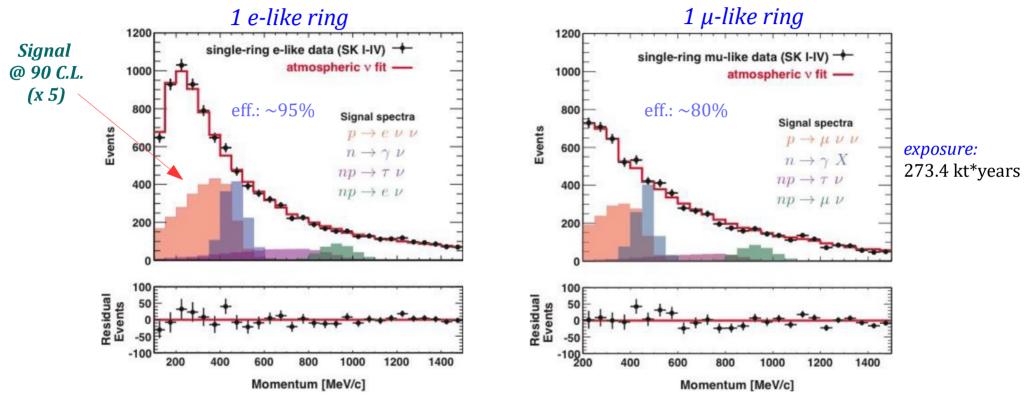
 \rightarrow because $m_{ au} > 1$ GeV, au only occurs in dinucleon channels [Bryman (2014)]

More Exotic Searches

- Motivation: large theory uncertainty requires broad search strategy
 - \rightarrow understand well 1-ring atm.-v background
 - \rightarrow do wide search of channels w/ 1-ring signature:

$$p \rightarrow e^{+}\nu\nu, \quad p \rightarrow \mu^{+}\nu\nu, \quad p \rightarrow e^{+}X, \quad p \rightarrow \mu^{+}X, \quad p \rightarrow \mu^{+}X, \quad np \rightarrow e^{+}\nu, \quad np \rightarrow \tau^{+}\nu, \quad n \rightarrow \gamma\nu$$

→ trilepton decays arise in Pati-Salam models, in some $\tau_{p \to e(\mu)\nu\nu} \sim 10^{32\pm1} \text{yrs.}$ [Pati, Salam (1973)] → dinucleon decays arise in extended Higgs models [Arnold, Fornal, Wise (2013)]

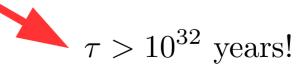

- \rightarrow because $m_{ au} > 1$ GeV, au only occurs in dinucleon channels [Bryman (2014)]
- Search strategy: only e^+, μ^+ are visible
 - \rightarrow can't reconstruct nucleon(s)
 - \rightarrow do spectral fit for 1-ring momenta

More Exotic Searches

[Takhistov+ (SK), PRL (2014)] [Takhistov+ (SK), PRL (2015)]

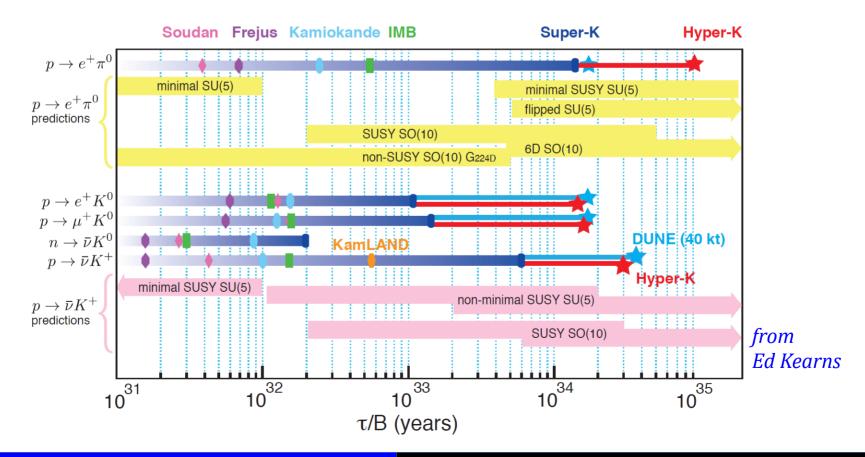
• <u>Results</u>:

Combined results for SK I- IV


- <u>No significant excess</u> \rightarrow lifetime limit (90% C.L.)
 - \rightarrow limit improved > 2 orders
 - → constrain Pati-Salam models

$$\tau_{spec.\ modes} > \text{few} \times 10^{32} \text{ yrs.}$$

Summary of Super-K Results


from S. Mine, TAUP (2015)

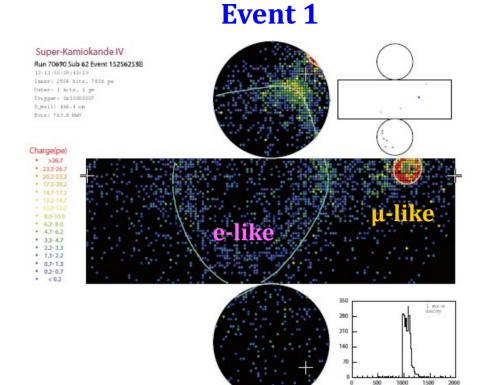
Decay mode	∆(B-L)	Lifetime lower limit at 90% CL (years)	Paper (previous result)
p→e⁺π ⁰	0	(*) 1.67 × 10 ³⁴	(<u>PRD 85, 112001 (2012)</u>)
p→vK⁺	0(v), 2(v)	6.61 × 10 ³³	(<u>PRD 90, 072005 (2014)</u>)
p→μ⁺π⁰	0	(*) 7.78 × 10 ³³	(<u>PRD 85, 112001 (2012)</u>)
p→e⁺/μ⁺(η,ρ,ω)	0	(0.04-4.2) × 10 ³³	<u>PRD 85, 112001 (2012)</u>
p→µ⁺K⁰	0	1.6 × 10 ³³	PRD 86, 012006 (2012)
$n \rightarrow \overline{\nu} \pi^0$, $p \rightarrow \overline{\nu} \pi^+$	0	$1.1 imes 10^{33}$, $3.9 imes 10^{32}$	PRL 113, 121802 (2014)
p→e⁺/µ⁺vv	0(⊽v), 2(vv,vv)	1.7/2.2 × 10 ³²	<u>PRL 113, 101801 (2014)</u>
p→e⁺/µ⁺X	?	7.9/4.1 × 10 ³²	arXiv:1508.05530, accepted by PRL
n→νγ	0(v), 2(v)	5.5 × 10 ³²	arXiv:1508.05530, accepted by PRL
pp→K⁺K⁺	2	1.7 × 10 ³²	PRL 112, 131803 (2014)
pp→ $\pi^+\pi^+$, pn→ $\pi^+\pi^0$, nn→ $\pi^0\pi^0$	2	7.22 × 10 ³¹ , 1,70 × 10 ³² , 4.04 × 10 ³²	<u>PRD 91, 072009 (2015)</u>
np→(e⁺,μ⁺,τ⁺)ν	0(v), 2(v)	(0.22-5.5) × 10 ³²	arXiv:1508.05530, accepted by PRL
n-n oscillation	2	1.9 × 10 ³²	<u>PRD 91, 072006 (2015)</u>

Future

- <u>Future</u>: Hyper-K (+ DUNE/LBNF)
- Hyper-K ≈ SK x 20, improved technology
- Large uncertainty in predictions, however ...
 - \rightarrow approaching interesting regime of $\tau \sim 10^{35}$ yrs.
 - \rightarrow will greatly benefit from large volume of Hyper-K

Conclusions

- Baryon number violation appears in many contexts
- Connection between nucleon decay and other physics highlights it as a unique experimental window to high energies
- Uncertainty in theory predictions requires a broad search program and Super-K is the best detector for this

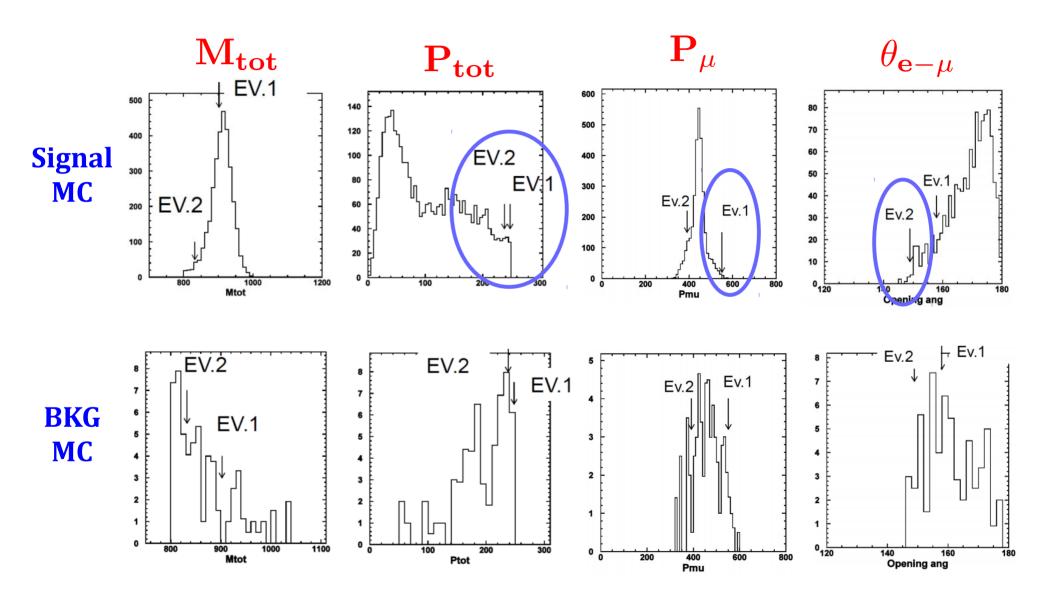

 \rightarrow new future analyses (e.g. $n \rightarrow \nu \nu \nu, pp \rightarrow e^+e^+...$)

• Approaching interesting limit range of $\tau \sim 10^{35}$ yrs.

 \rightarrow exciting times ahead (Hyper-K + DUNE)

Appendix

Appendix: 2 events passing selection in $\mathbf{p} ightarrow \mu^+ \pi^0$

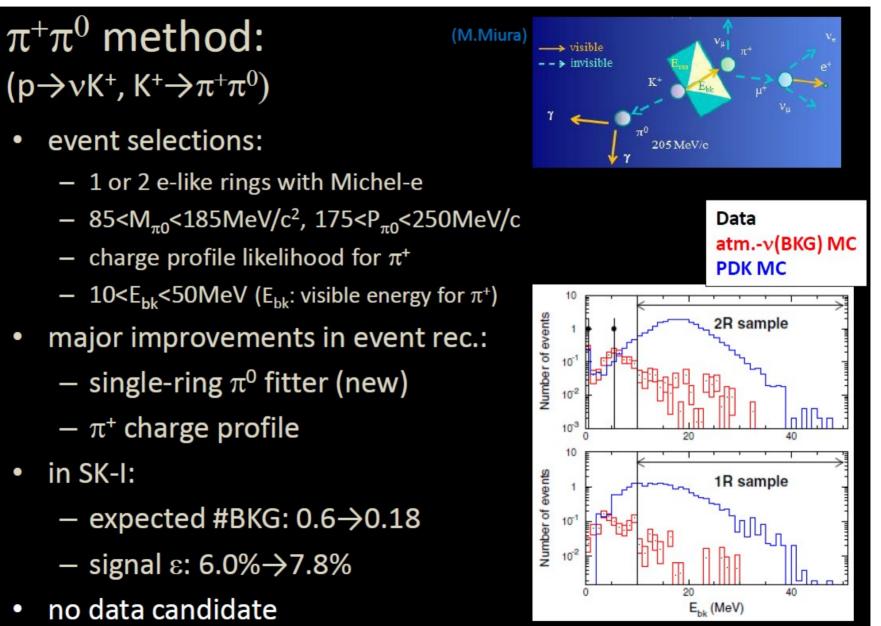

$$(M_p, P_{tot}) = (902.5, 248.0) \text{ MeV}$$

Wall = 466.0 cm
rings = 2
 $P_e = 374.9 \text{ MeV/c}$
 $P_\mu = 551.1 \text{ MeV/c}$
 $\theta_{e-\mu} = 157.9$

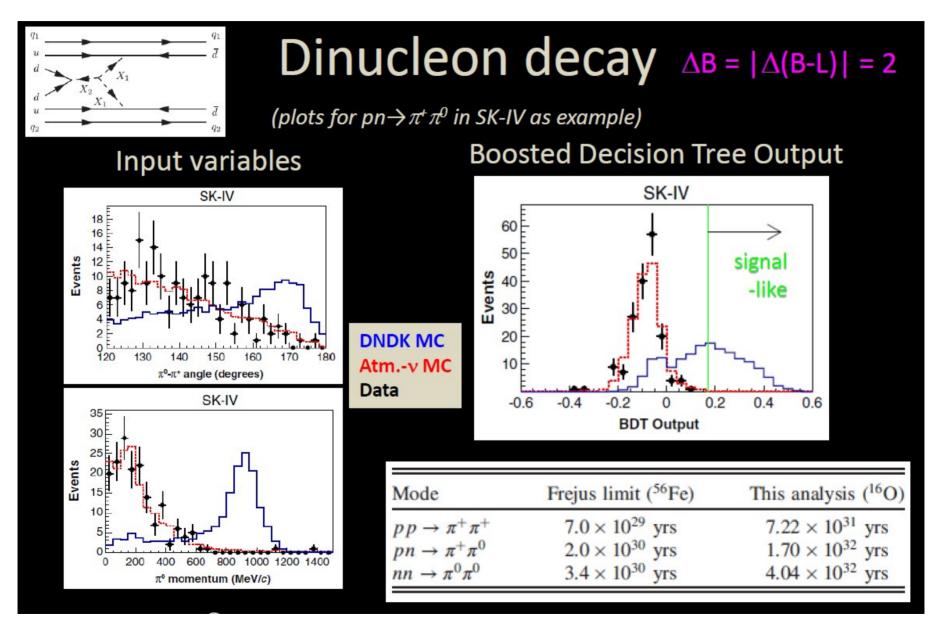
Event 2 Super-Kamiokande IV Run 72130 Sub 1162 Event 2855998508 13-11-22:11:50:56 Laner: 2400 hits, 7793 pe Oster: 2 hits, 0 pe Trigger: 0:1000000 1_wall: 351.6 cm Bris: 669.3 HeV Charge(pe) * >26.7 • 23.3-26.7 • 20.2-23.3 u-like • 62-8.0 e-like * 4.7-6.2 * 33-47 • 22-33 • 13-22 • 0.7-1.3 • 0.2-0.7 + <0.2 1 mi-e decay 320 "fake ring" 500 1000 1500 2000 Times (ns)

 $(M_p, P_{tot}) = (832.4, 237.9) \text{ MeV}$ Wall = 351.6 cm # rings = 2 $P_e = 460.5 \text{ MeV/c}$ $P_\mu = 391.3 \text{ MeV/c}$ $\theta_{e-\mu} = 148.9$

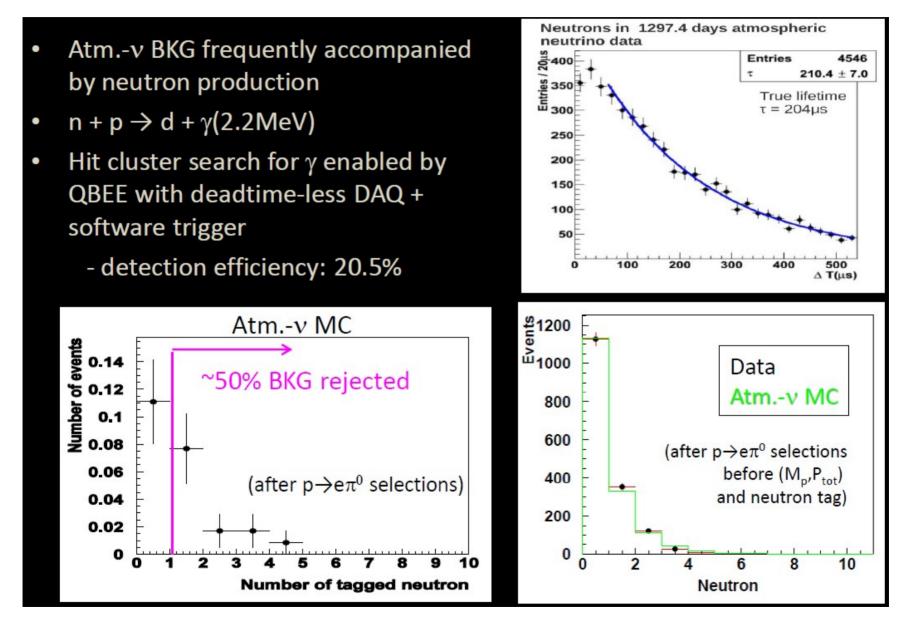
Times (ns)


Appendix: 2 events passing selection in ${f p} o \mu^+ \pi^0$

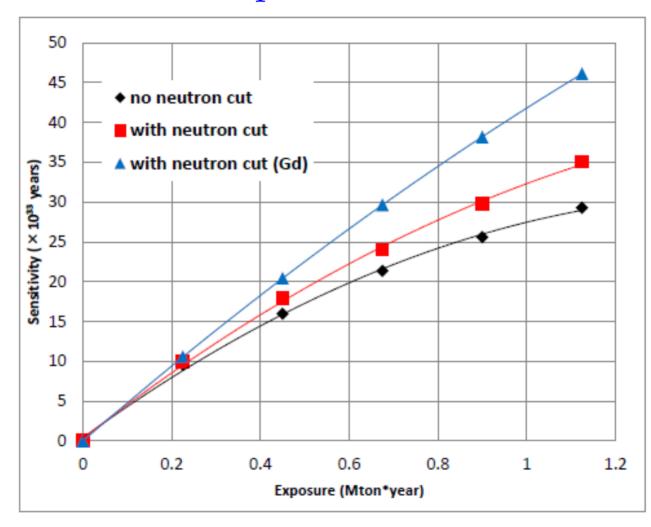
plots from M. Miura


Appendix: Search (C) for $\mathbf{p} ightarrow u \mathbf{K}^+$

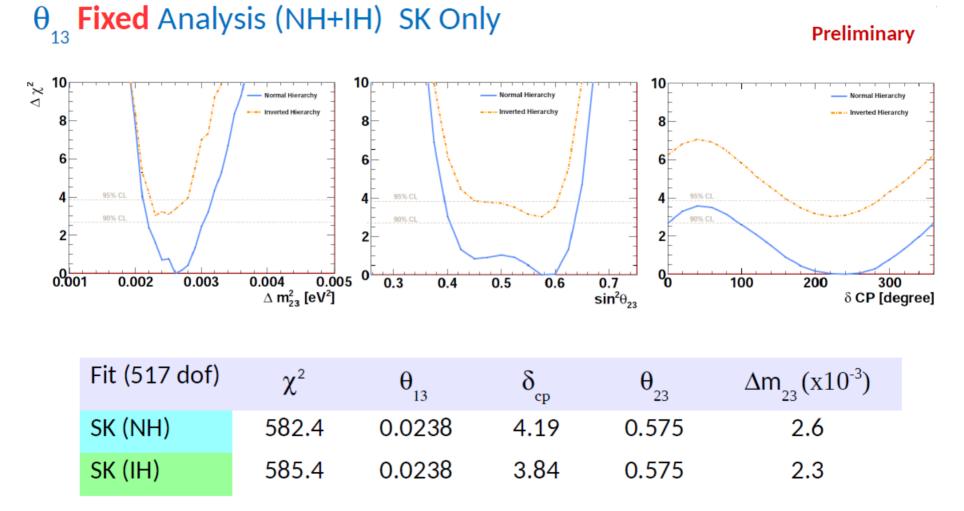
from S. Mine, Moriond (2015)


Appendix: Dinucleon Decay to Pions

from S. Mine, TAUP (2015)


Appendix: Neutron Tagging in SK-IV

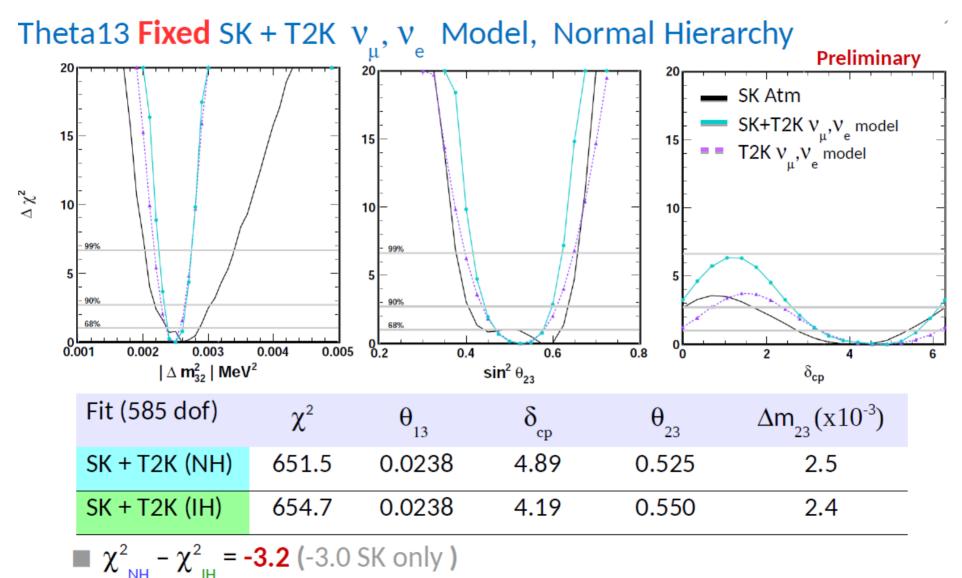
from S. Mine, TAUP (2015)


Appendix: Proton Decay w/ Gadolinium

 $p \to e^+ \pi^0$

Appendix: Atmospheric Oscillation Results (SK)

from R. Wendell, ICRC (2015)



Offset in these curves shows the difference in the hierarchies

Normal hierarchy favored at: $\chi^2_{NH} - \chi^2_{H} = -3.0$, not significant

Appendix: Atmospheric Oscillation Results (SK+T2K)

from R. Wendell, ICRC (2015)

CP Conservation (sin δ_{m} = 0) allowed at (at least) 90% C.L. for both hierarchies

Appendix: Sterile Neutrinos

from R. Wendell, ICRC (2015)

Sterile Neutrino Oscillations in Atmospheric Neutrinos

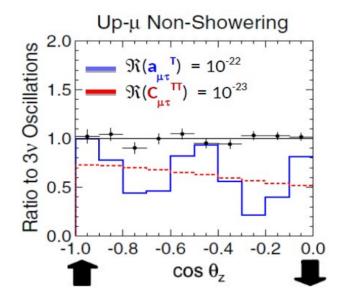
- Sterile Neutrino searches at SK are independent of the sterile Δm^2 and the number sterile neutrinos U = U
 - 3+1 and 3+N models have the same signatures in atmospheric neutrinos
 - For $\Delta m_s^2 \sim 1 \text{ eV}^2$ oscillations appear fast: $< \sin^2 \Delta m^2 L/E > \sim 0.5$

■ | U_{µ4} |²

- Induces a decrease in event rate of µlike data of all energies and zenith angles
- | U_{τ4} |²
 - Shape distortion of angular distribution of higher energy μ-like data

Appendix: Sterile Neutrinos

from R. Wendell, ICRC (2015) **Sterile Oscillations Results** PRD.91.052019 (2015) 10^{2} Unitarity PRL. 52. 1384 (1984) 0.8 10 Δm^2_{41} (eV²) 0.6 IU 4 MiniBooNE + 0.4 SciBooNE 1E **PRD86**. 052009 (2012) 0.2 SK SK 0 10⁻² 10⁻³ 10 10⁻¹ 10⁻³ 10⁻² 10^{-1} $|\bigcup_{\mu 4}|^2$ $|U||^2$

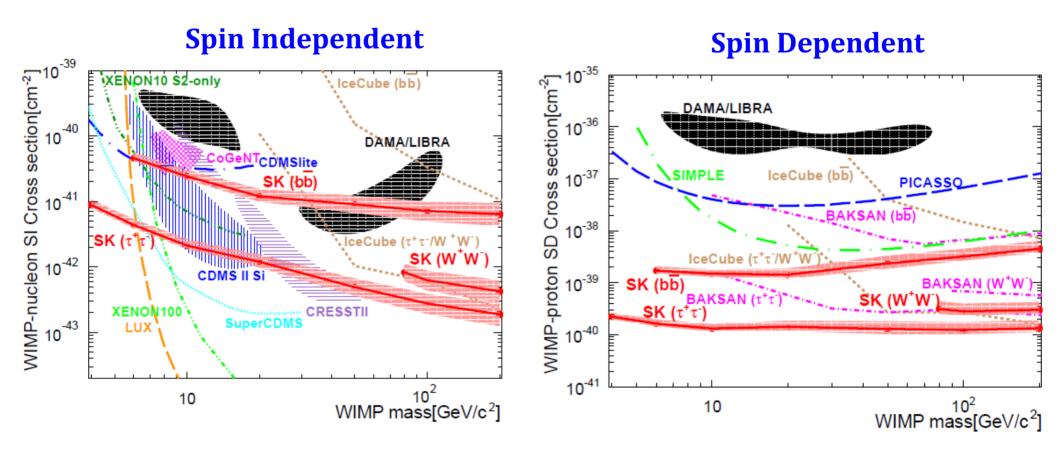

Turning off sterile matter effects while preserving standard three-flavor oscillations provides a pure measurement of | U₁₁₄ |²

- Using sterile matter effects, but decoupling v_e oscillations provides a joint measurement of $| U_{\mu 4} |^2$ and $| U_{\tau 4} |^2$, with a slightly biased estimate of the former
- Using SK-I+II+III+IV data (4438 days)
 | U_{µ4} |² < 0.041 at 90% C.L. | U_{τ4} |² < 0.18 at 90% C.L.

$$\begin{split} H &= UMU^{\dagger} + V_e + H_{\rm LV} \\ H_{\rm LV} &= \begin{pmatrix} 0 & a_{e\mu}^T & a_{e\tau}^T \\ (a_{e\mu}^T)^* & 0 & a_{\mu\tau}^T \\ (a_{e\tau}^T)^* & (a_{\mu\tau}^T)^* & 0 \end{pmatrix} \\ &- \frac{4E}{3} \begin{pmatrix} 0 & c_{e\mu}^{TT} & c_{e\tau}^{TT} \\ (c_{e\tau}^{TT})^* & 0 & c_{\mu\tau}^{TT} \\ (c_{e\tau}^{TT})^* & (c_{\mu\tau}^{TT})^* & 0 \end{pmatrix} \end{split}$$

Coefficient	Unit	d	CPT	Oscillation effect
Isotropic				
$a_{\alpha\beta}^T$	GeV	3	Odd	$\propto L$
$c_{\alpha\beta}^{TT}$		4	Even	$\propto LE$

from S. Mine, Moriond (2015)


LV	LV Parameter 95% Upper Limi		Best Fit	No LV $\Delta \chi^2$	Previous Limit		
еµ	$\operatorname{Re}\left(a^{T}\right)$	$1.8\times 10^{-23}~{\rm GeV}$	$1.0\times 10^{-23}~{\rm GeV}$	1.4	4.2×10^{-20} GeV [[51]	
	$\operatorname{Im}(a^{T})$	$1.8\times 10^{-23}~{\rm GeV}$	$4.6\times 10^{-24}~{\rm GeV}$	1.4	4.2 × 10 Gev [[91]	
	$\operatorname{Re}\left(c^{TT}\right)$	$1.1 imes 10^{-26}$	1.0×10^{-28}	0.0	9.6×10^{-20}	[51]	
	$\operatorname{Im}\left(c^{TT}\right)$	$1.1 imes 10^{-26}$	$1.0 imes 10^{-28}$		5.0 × 10		
	$\operatorname{Re}\left(a^{T}\right)$	$4.1\times 10^{-23}~{\rm GeV}$	$2.2 \times 10^{-24} {\rm ~GeV}$	0.0	$7.8 imes 10^{-20} { m ~GeV}$	[59]	
$e\tau$	$\operatorname{Im}\left(a^{T}\right)$	$2.8\times 10^{-23}~{\rm GeV}$	$1.0\times 10^{-28}~{\rm GeV}$	0.0	7.8 × 10 Gev [[92]	
er	$\operatorname{Re}\left(c^{TT}\right)$	$1.2 imes 10^{-24}$	$1.0 imes 10^{-28}$	0.3	$1.3 imes 10^{-17}$	[52]	
	$\operatorname{Im}(c^{TT})$	$1.4 imes 10^{-24}$	$4.6 imes 10^{-25}$		1.3 × 10		
	$\operatorname{Re}\left(a^{T}\right)$	$6.5\times 10^{-24}~{\rm GeV}$	$3.2\times 10^{-24}~{\rm GeV}$	0.9			
	$\operatorname{Im}(a^{T})$	$5.1\times 10^{-24}~{\rm GeV}$	$1.0\times 10^{-28}~{\rm GeV}$	0.5	_		
$\mu \tau$	$\operatorname{Re}\left(c^{TT}\right)$	5.8×10^{-27}	1.0×10^{-28}	0.1			
	$\operatorname{Im}\left(c^{TT}\right)$	5.6×10^{-27}	1.0×10^{-27}	0.1	_		

no evidence of Lorentz violation observed (4,438days ~ 274kt·year)

- set limits for the first time in neutrino $\mu\tau$ sector of SME
- improved existing limits by up to 7 orders of magnitude

Appendix: Indirect DM Searches (solar WIMPs)

[Choi+ (SK), PRL (2015)]

