

Experimentelle Physik V

Rare decays in b hadrons

Johannes Albrecht (TU Dortmund)

13.3.2016

• High energy:

"real" new particles can be produced and discovered via their decays

- Discovery of the Higgs boson at the LHC \rightarrow completion of the SM
- Tested scale : <10TeV</p>
- High precision:
 "virtual" new particles can be seen in quantum loops
 - Higher mass scale reachable (up to ~100TeV)

Direct and indirect searches are both needed, both equally important, and complement each other

Rare B decays:

- SM: Flavour changing neutral currents only at loop-level
- b → s ℓ⁺ℓ⁻ give a unique glimpse to higher scales: experimentally and theoretically clean

$b \to s \; \ell^+ \ell^{\scriptscriptstyle -}$ as test bench for high scales

- $b \rightarrow s \ell^+ \ell^-$ decays allow precise tests of Lorentz structure
 - Sensitive to new phenomena via non-standard couplings
 - Best described with effective field theory, allows to extract potential New Physics amplitudes

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \left[\underbrace{C_{i}(\mu)O_{i}(\mu)}_{\text{left-handed part}} + \underbrace{C_{i}'(\mu)O_{i}'(\mu)}_{\text{right-handed part}} \right] \overset{i=1,2}{\underset{i=3-6,8}{\text{Gluon penguin}}} \overset{i=1,2}{\underset{i=3-6,8}{\text{Gluo$$

- Menu for this talk:
 - Purely leptonic decays: $B_s \rightarrow \mu^+ \mu^-$

 \rightarrow sensitive to C_{S,P} and C₁₀

– Recent measurements of $b \to s \; \ell^+ \ell^{\scriptscriptstyle -},$ dominantly $B^0 \to K^* \; \mu^+ \mu^{\scriptscriptstyle -}$

 \rightarrow sensitive to C_{7,9} and C₁₀

- Lepton flavour universality

 \rightarrow sensitive to C^e vs C^µ

LETTER First observation of $B_s \rightarrow \mu^+ \mu^-$

doi:10.1038/nature14474

OPEN

$$\mathcal{B}(B_s^0 \rightarrow \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \cdot 10^{-9}$$

SM: 3.66±0.23 ×10⁻⁹

$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \cdot 10^{-10}$$

SM: 1.06±0.09 x10⁻¹⁰

6.2 σ significance \rightarrow first observation - compatible with SM at 1.2 σ

3.0 σ significance \rightarrow first evidence - compatible with SM at 2.2 σ

SM: Bobeth et al: PRL 112 101801 (2014)

13. March 2016

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Observables depend on $B \rightarrow K^*$ form factors and on short distance physics

13. March 2016

Johannes Albrecht

Angular analysis of $B^0 \,{\to}\, K^{*0}\,\mu^+\mu^-$

- LHCb published the first full angular analysis of the decay
 - Unbinned maximum likelihood fit to $K\pi\mu\mu$ mass and three decay angles
 - Simultaneously fit $K\pi$ mass to constrain s-wave configuration
 - Efficiency modelled in four dimensions

JHEP02(2016)104

Johannes Albrecht

- Full angular fit allows to extract:
 - CP-averaged terms and their correlations
 - CP asymmetries

Standard Model predictions based on [Altmannshofer & Straub, arXiv:1411.3161] [LCSR form-factors from Bharucha, Straub & Zwicky, arXiv:1503.05534] [Lattice form-factors from Horgan, Liu, Meinel & Wingate arXiv:1501.00367]

Results

References: LHCb [JHEP 02 (2016) 104] , CMS [PLB 753 (2016) 424] BaBar [arXiv:1508.07960] CDF [PRL 108 (2012) 081807] Belle [PRL 103 (2009) 171801].

Results

References: LHCb [JHEP 02 (2016) 104] , CMS [PLB 753 (2016) 424] BaBar [arXiv:1508.07960] CDF [PRL 108 (2012) 081807] Belle [PRL 103 (2009) 171801].

Results

11/19 *інср*

15

- In QCD factorization/SCET there are only two form factors
 - One associated with A_0 and the other with A_{II} and A_{perp}
- Create ratios of observables with minimal dependence on form-factors, eg

- If the observed anomalies are real, expect discrepancies in other $b \to s \ decays$..

- Analysis of large class of $b \rightarrow s \ \mu^+\mu^-$ decays
 - Several tensions seen, but individual significance is moderate
 - \rightarrow Perform global analysis

SM predictions based on [Altmannshofer & Straub, arXiv:1411.3161] [LCSR form-factors from Bharucha et al. arXiv:1503.05534] [Lattice prediction from Horgan et al. arXiv:1310.3722]

13/19

Combine all $b \rightarrow s$ data in global fit

• Global fit to all $b \rightarrow s$ data prefers a deviation from the Standard Model in a vector-like interaction

- Global fit to all $b \rightarrow s$ data prefers a deviation from the Standard Model in a vector-like interaction
- Interpretation:
 - "clearly New Physics", or ..
 - Not well understood QCD contribution
 - → Understanding needs more data and theoretical work

In the SM, leptons couple universal to W[±] and Z⁰
 → test this in ratios of semileptonic decays

Ratios differ from unity only by phase space
 → hadronic uncertainties cancel in the ratio

LFU: electron vs. muon (R_k)

LHCb measures with 3fb⁻¹

$$R_{K} = \frac{BR(B^{+} \to K^{+}\mu^{+}\mu^{-})}{BR(B^{+} \to K^{+}e^{+}e^{-})} = 0.745 \quad \begin{array}{c} +0.090 \\ -0.074 \end{array} \quad (stat) \pm 0.036(syst)$$

(SM: R_k =1.00, consistent at 2.6 σ)

13. March 2016

R(D) and R(D*)

PRL 115(2015)111803

• Combination is 3.9σ from the SM expectation:

 $R(D^*) = 0.252 \pm 0.003$

[Kamenik et al. Phys. Rev. D78 014003 (2008), S. Jajfer et al. Phys. Rev. D85 094025 (2012)]

- The Standard Model is tested in a variety of channels

 → many measurements consistent with predictions
 → significant deviations in of b → s ℓ⁺ℓ⁻ channels
 → need for data to conclude
- Interesting flavour data coming soon
 - − LHCb Run 2 \rightarrow tripling the dataset
 - LHCb Upgrade record data with "Trigger-less Readout"

LHCb THCp	The LHCb Public results		
LHCb public	ations		
[to restricted-access page] PUBLICATIONS PER WORKING GROUP	List of papers (Total of 303 papers)		
FLAVOUR TAGGING	TITLE	DOCUMENT NUMBER	JOURNAL
QUARKONIA B DECAYS TO CHARMONIUM DETECTOR PERFO	Backup		
CHARMLESS <i>b</i> -HADRON DECAYS	Measurement of the $B^0_s o D^{(*)+}_s D^{(*)-}_s$ branching fractions	PAPER-2015-053	PRD
QCD, ELECTROWEAK AND EXOTICA	A new algorithm for identifying the flavour of B^0_s mesons at LHCb	PAPER-2015-056	JINST
	First observation of $D^0 - {ar D}^0$ oscillations in $D^0 o K^+ \pi^- \pi^+ \pi^-$ decays and measurement of the associated coherence parameters	PAPER-2015-057	PRL
RARE DECAYS	Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 o DK^+\pi^-$ decays	PAPER-2015-059	PRL
SEMILEPTONIC B DECAYS	Measurement of the difference of time-integrated CP asymmetries in $D^0 \to K^- K^+$ and $D^0 \to \pi^- \pi^+$ decays	PAPER-2015-055	PRL
LUMINOSITY	Study of $\psi(2S)$ production and cold nuclear matter effects in <i>p</i> Pb collisions at $\sqrt{s_{NN}} = 5$ TeV	PAPER-2015-058	JHEP
B DECAYS TO OPEN	Observation of the $B^0_s ightarrow J/\psi \phi \phi$ decay	PAPER-2015-033	JHEP

- Can also determine the angular observables using principal moments of the angular distribution:
 - ✓ Robust estimator even for small datasets (allows us to bin more finely in q^2).
 - × Statistically less precise than the result of the maximum likelihood fit.

 SM predictions based on [Altmannshofer & Straub, arXiv:1411.3161] [LCSR form-factors from Bharucha, Straub & Zwicky, arXiv:1503.05534] [Lattice form-factors from Horgan, Liu, Meinel & Wingate arXiv:1501.00367]

tul

	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s o \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s o K^{*0} \bar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 o \phi K^0_S)$	0.17	0.15	0.03	0.02
B_s mixing	$2eta_s \; (B_s o J/\psi \phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s o \phi \gamma)$	-	0.07	0.02	< 0.01
currents	${\cal A}^{\Delta\Gamma_s}(B_s o \phi\gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	${\cal B}(B_s o \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma~(B ightarrow D^{(*)}K^{(*)})$	$\sim 20^\circ$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$eta \; (B^0 o J/\psi K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	$2.5 imes10^{-3}$	2×10^{-4}	$4 imes 10^{-5}$	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	$4.3 imes10^{-3}$	4×10^{-4}	$8 imes 10^{-5}$	-

Experimental overview of $b \rightarrow s (d) \ell^+ \ell^-$

- FCNC decays $b \to s$ (d) $\ell^+ \ell^-$: large variety of final states
 - Allows detailed test of the structure of the underlying interaction
 - Effects in one decay can be cross checked in others

# of events	BaBar 433fb ⁻¹	Belle 605fb ⁻¹	CDF 9.6fb ⁻¹	LHCb 1 / 3 fb ⁻¹	ATLAS 5fb ⁻¹	CMS 5fb ⁻¹
$\mathrm{B}^{0} \to \mathrm{K}^{*0} \ell^{\!+}\!\ell^{\!-}$	137±44*	247±54*	288±20	2361±56	466±34	415±29
$\mathrm{B}^{+} \to \mathrm{K}^{*+} \ell^{+} \ell^{-}$			24±6	162±16		
$\mathrm{B}^+ \longrightarrow \mathrm{K}^+ \ell^+ \ell^-$	153±41*	162±38*	319±23	4746±81		
$\mathrm{B}^{0} \to \mathrm{K}^{0}_{\ \mathrm{s}} \ell^{+} \ell^{-}$			32±8	176±17		
$\mathrm{B}_{\mathrm{s}} \to \phi \; \ell^+ \ell^-$			62±9	174±15		
$\Lambda_b {\longrightarrow} \Lambda \ell^+ \ell^-$			51±7	78±12		
$B^+ \longrightarrow \pi^+ \ell^+ \ell^-$		limit		25±7		
Babar arXiv:1204.3933 ATLAS (preliminary) LHCb Belle arXiv:0904.0770 [ATLAS-CONF-2013-038] arxiv:1403.8044 CDF arXiv:1107.3753 + 1108.0695 CMS (preliminary) +1305.2168 + ICHEP 2012 [CMS-BPH-11-009] +JHEP12(2012)125				*mixture of B ⁰ and B [±] and ℓ = e, μ other experiments: $\ell = \mu$ only		

13. March 2016

The LHCb experiment

25/19 *LHCb*