Probing Radiative Neutrino Mass Models with Dilepton Events at the LHC

Guella Chahrazed

Faculty of physics University of Sciences and Technology of Oran Mohammed Boudiaf

Based on [arXiv:1601.04342], In collaboration with D. Cherigui, A. Ahriche, S. Nasri and R. Soualah

March 18, 2016

Moriond 2016

Outline

Introduction

- 2 Three-Loop Model For Neutrino Masses
- (3) Production of the charged scalar S^{\pm} at LHC collider
- 4 LHC collider signatures
- 5 Signal Vs Background
 - 6 Numerical Results

Introduction

- The Standard Model (SM) has been very successful in describing physics at O(100GeV)
- ► The discovery of neutrino oscillation phenomenon ⇒ Neutrinos should be massive.
- Necessary to go beyond the Standard Model for ν mass
 - Seesaw mechanism (Type I, Type II, Type III...)
 - Radiative models (1 loop [Zee, 1980, Ma, 2006], 2 loops [Zee, 1986, Babu, 1988], 3 loops [Aoki et al., 2009,KNT].

Three-Loop Model For Neutrino Masses

• Introduce a singly charged scalar (S^{\pm}), three generations of fermions $\mathcal{F}_i(i = 1 - 3)$ and one scalar multiplet, ϕ to Standard Model [**PRD90,015024**]

Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \{ f_{\alpha\beta} \overline{L_{\alpha}^{c}} L_{\beta} S^{+} + g_{i\alpha} \overline{\mathcal{F}_{i}^{c}} \phi^{+} e_{\alpha R} + h.c \} - \frac{1}{2} \overline{\mathcal{F}_{i}^{c}} M_{ij} \mathcal{F}_{j} - V(H, S, \phi) \quad / V(H, S, \phi) \supset \frac{\lambda_{S}}{4} (S^{*})^{2} \phi^{2} + h.c$$

 \bullet Impose \mathbb{Z}_2 symmetry in order to forbid Dirac masses at tree-level.

	$SU(2)_L$	$U(1)_Y$	\mathbb{Z}_2
S^+	1	1	1
ϕ_i	1 or 2 or 3	1	-1
\mathcal{F}_i	1 or 2 or 3	1	-1

- Neutrino mass arises at three-loop.
- Lighetest of \mathcal{F}_i 's is a candidate for DM.

Guella Chahrazed (USTOMB)

NR

Production of the charged scalar S^{\pm} at LHC collider

- Three-loop model files are generated using LanHEP
- cross sections of the charged scalar pair production at various CM energies were obtained by using CalcHEP package

LHC collider signatures

 Our signal consists of requiring di-leptons plus missing energy which it is defined as

$$pp \to I^{\pm}_{\alpha} I^{\pm}_{\beta} + E_{miss}$$
 (1)

where
$$I^\pm_{lpha} I^\pm_{eta} = \{e^+e^-, \mu^+\mu^-, e^-\mu^+\}$$

The SM background is defined as

$$\rho p o W^+ W^- o I^{\pm}_{\alpha} I^{\pm}_{\beta} \nu_{\alpha} \nu_{\beta}$$
 (2)

$$pp \to ZZ(\gamma Z) \to I^{\pm}_{\alpha} I^{\pm}_{\beta} \nu_{\alpha} \nu_{\beta}$$
 (3)

set a Benchmark parameter which satifies FLV constraints.

$$egin{aligned} f_{e\mu} &= -(4.97+i1.91) imes 10^{-2}, & f_{e au} &= 0.106+i0.0859 \ f_{\mu au} &= -(3.04+i4.72) imes 10^{-6}, & M_S &= 914.2 GeV \end{aligned}$$

Signal Vs Background

- In order to optimize the signal significance, the event selection is performed in two steps:
 - The pre-selection : we use an accurate cut on M_{T2} $(M_{T2} > M_W)$
 - The final selection : deduce kinematic cuts

Process	cuts@8 TeV	cuts@14 TeV		
$e^{-\mu^{+}} + E_{miss}$	$80 < p_T^{e^-} < 250$ $80 < p_T^{\mu^+} < 270$	$p_T^{e^-} > 180$ $p_T^{\mu^+} > 170$		
	$-1.56 < \eta_{e^-} < 2.99 -1.92 < \eta_{\mu^+} < 3$	$1.1 < \eta_{e^-} < 2.89$ $1.2 < \eta_{\mu^+} < 3.02$		
$e^-e^+ + E_{miss}$	$25 < p_T^l < 120$	$30 < p_T^{e^-} < 80$		
	$-2.09 < \eta_I < 2.89$	$-2.8 < \eta_{e^-} < 2.95$		
$\mu^{-}\mu^{+} + E_{miss}$	$30 < p_T^l < 155$	$25 < p_T^{e^-} < 40$		
	$-2.38 < \eta_I < 2.1$	$-0.13 < \eta_{e^-} < 3$		

Guella Chahrazed (USTOMB)

Numerical Results

• In order to estimate the signal, the significance is given as (should be larger than 5σ)

$$S = \frac{N_{EX}}{\sqrt{N_{EX} + N_B}} \quad N_{EX} = N_M - N_B = L \times (\sigma_M - \sigma_B)$$
(4)

$$S \propto \left[2Re\left(\mathcal{M}_{SM}^{\dagger}\mathcal{M}_{non-SM}\right) + \left|\mathcal{M}_{non-SM}\right|^{2}\right] \propto \left|f_{\alpha\rho}f_{\beta\rho}\right|^{2}$$
(5)

Process	σ^{EX} (fb)	σ^B (fb)	\mathcal{S}_{100}	Process	σ^{EX} (fb)	σ^B (fb)	S ₂₀
$e^-\mu^+ + E_{miss}$	1.253	0.459	7.093	$e^-\mu^+ + E_{miss}$	13.03	11.98	1.301
$e^-e^+ + E_{miss}$	44.45	38.65	8.699	$e^-e^+ + E_{miss}$	62.74	59.72	1.7051
$\mu^-\mu^+ + E_{miss}$	65.27	56.86	10.409	$\mu^-\mu^+ + E_{miss}$	81.691	77.49	2.0786

- An observed deviation from the SM, if seen in the future, could be a very important hint that the SM right-handed neutrinos are Majorana fermions.
- ► We conclude that an inclusive cut on the M_{T2} event variable is vital and leads to an effective suppression of the large SM background.
- ▶ We found that at the LHC@8 TeV, the charged scalars effect can not be seen with luminosity $L = 20 fb^1$, however, at LHC@14 TeV with luminosity $L = 100 fb^{-1}$, this effect can be found in all channels.
- ▶ It has been shown that the signal significance decreases rapidly with the increasing charged scalar mass.

- An observed deviation from the SM, if seen in the future, could be a very important hint that the SM right-handed neutrinos are Majorana fermions.
- ► We conclude that an inclusive cut on the M_{T2} event variable is vital and leads to an effective suppression of the large SM background.
- ▶ We found that at the LHC@8 TeV, the charged scalars effect can not be seen with luminosity $L = 20 fb^1$, however, at LHC@14 TeV with luminosity $L = 100 fb^{-1}$, this effect can be found in all channels.
- It has been shown that the signal significance decreases rapidly with the increasing charged scalar mass.

- An observed deviation from the SM, if seen in the future, could be a very important hint that the SM right-handed neutrinos are Majorana fermions.
- ► We conclude that an inclusive cut on the M_{T2} event variable is vital and leads to an effective suppression of the large SM background.
- ▶ We found that at the LHC@8 TeV, the charged scalars effect can not be seen with luminosity $L = 20 fb^1$, however, at LHC@14 TeV with luminosity $L = 100 fb^{-1}$, this effect can be found in all channels.
- It has been shown that the signal significance decreases rapidly with the increasing charged scalar mass.

- An observed deviation from the SM, if seen in the future, could be a very important hint that the SM right-handed neutrinos are Majorana fermions.
- ► We conclude that an inclusive cut on the M_{T2} event variable is vital and leads to an effective suppression of the large SM background.
- ▶ We found that at the LHC@8 TeV, the charged scalars effect can not be seen with luminosity $L = 20 fb^1$, however, at LHC@14 TeV with luminosity $L = 100 fb^{-1}$, this effect can be found in all channels.
- It has been shown that the signal significance decreases rapidly with the increasing charged scalar mass.

- An observed deviation from the SM, if seen in the future, could be a very important hint that the SM right-handed neutrinos are Majorana fermions.
- ► We conclude that an inclusive cut on the M_{T2} event variable is vital and leads to an effective suppression of the large SM background.
- ▶ We found that at the LHC@8 TeV, the charged scalars effect can not be seen with luminosity $L = 20 fb^1$, however, at LHC@14 TeV with luminosity $L = 100 fb^{-1}$, this effect can be found in all channels.
- It has been shown that the signal significance decreases rapidly with the increasing charged scalar mass.