

UiO **University of Oslo**

High-pT lepton final states at 13 TeV (W' and Z' searches)

James Catmore (University of Oslo, Norway) on behalf of the ATLAS and CMS Collaborations

51st Rencontres de Moriond EW 2016

W' and Z'

- Many BSM models predict the existence of massive spin-1 objects decaying into pairs of leptons
 - ► W'→|v|
 - ► $Z' \rightarrow II : I \in \{e, \mu, \tau\}$
- Experimentally attractive: straightforward to trigger/reconstruct,
- SM backgrounds are either low or well understood
- Practically: the differences between the models are largely in the natural widths, ranging from around 0.5% to 3% (or non-resonant)

Sequential Standard Model

Applied to both $W' \rightarrow N_1$ and $Z' \rightarrow II$ Couplings to fermions are identical to those of the SMW and Z. Used as a benchmark

Grand Unification Model

Applied to Z'→II E6 gauge group breaks into SU(5) and two additional U(1) groups, physical states given by

 $Z'(\theta_{E_6}) = Z'_{\psi} \cos \theta_{E_6} + Z'_{\chi} \sin \theta_{E_6}$

Six different values for mixing angle θ lead to specific Z' states Z'_{ψ,χ,η,l,s}

Contact Interactions

Applied to di-lepton final state Quark and lepton compositeness with a characteristic energy scale Λ corresponding to the binding energy between fermion constituent. Produces non-resonant excesses.

13 TeV results overview

- Z': search for narrow resonances in the di-lepton invariant mass distributions $(M_{ee}, M_{\mu\mu})$ or for non-resonant excesses above the SM background
- W': search for discrepancies above background in the transverse mass distribution: $M_T = \sqrt{2p_T^l E_T^{miss}(1 \cos[\Delta \phi(\vec{p}_T^l, \vec{p}_T^{miss})])}$
- ATLAS and CMS recently updated their 8TeV limits with 13TeV data; this talk reviews these 13 TeV results

	ATLAS	CMS
One-lepton (W')	<u>ATLAS-CONF-2015-063</u> W' → {e, μ} + 反 _T	<u>CMS-PAS-EXO-15-006</u> W' → {e, μ} + ∠ _T
Two-leptons (Z')	$\begin{array}{l} \underline{ATLAS-CONF-2015-070}\\ Z' \rightarrow \{ee, \mu\mu\} \end{array}$ $\begin{array}{l} \underline{ATLAS-CONF-2015-072}\\ Z' \rightarrow \{e\mu\} \end{array}$	<u>CMS-PAS-EXO-15-005</u> Ζ' → {ee, μμ}

Event selection and main backgrounds

Run-I evaluation

- Trigger: single e/µ (ee for Z')
- Offline event selection:
 - W': single e/µ plus missing transverse energy
 - ▶ Z': ee/µµ
- Indicative signal efficiencies (CMS)
 - \blacktriangleright 3 TeV W': ~75% for e and μ
 - I TeV Z'→ee: ~75% barrel-barrel, 70% barrel-endcap
 - I TeV Z'→μμ:~90%
- Indicative dilepton resolutions
 - CMS (ee @ ITeV): I.8% (barrel), I.4% (barrel+endcap)
 - CMS (μμ @ ITeV): 4%
 - ATLAS (ee > 200 GeV): < 2%</p>
 - ATLAS (μμ @ ITeV): **I9-32**%

		W'	Ζ'	Means of evaluation
Real leptons	DΥ (W, Z, γ*)	\checkmark	\checkmark	MC
	t/tbar, single top	\checkmark	\checkmark	MC
	Di-bosons (WW, WZ,ZZ)	\checkmark	\checkmark	MC
Fake leptons (hadronic jets)	With real leptons (W+jets)	\checkmark	✓ (Electrons)X (Muons)	Data
	With each other (multi- jets)	\checkmark	✓ (Electrons)X (Muons)	Data
For the di-leptons: summed backgrounds are normalised to the level of the data in the region: 60/80 (CMS/ATLAS) <m1 120="" <="" gev<="" th=""></m1>				

→ mass independent systematics cancel

Run: 280319 Event: 1483975032 2015-09-25 21:35:46 CEST Z' to 2mu candidate event

 $M_{\mu\mu}$ event (1390 GeV) recorded by ATLAS @ 13TeV

CMS Experiment at the LHC, CERN Data recorded: 2015-Aug-22 02:13:48.861952 GMT Run / Event / LS: 254833 / 1268846022 / 846

M_{ee} event (2910 GeV) recorded by CMS @ I3TeV

Systematics

- Experimental uncertainties on the leptons and MET
 - Trigger (W')
 - Lepton reconstruction/ identification efficiency (W', Z')
 - Lepton isolation (W', Z')
 - MET scale/resolution (W')
 - Jet scale/resolution (W')
 - ► MC statistics at high mass (W', Z') ←
 - Normalisation (Z')

- Uncertainties on the MC background/signal
 - PDF-related for DY (W', Z')
 - Multi-jet and W+jets b/g
 (W')
- Luminosity (W')

Extrapolation/interpolation needed to fill gaps and extend to the full search range

Drell-Yan (W) dominates (e.g. ~90% at I TeV) Multi-jet of secondary importance Others largely irrelevant above I TeV

Drell-Yan (W) dominates (e.g. ~90% at I TeV) Others of secondary (and equal) importance

W' searches: production and upper mass limits

m_w, [TeV]

	Expected (TeV)		Observe	ed (TeV)
	ATLAS	CMS	ATLAS	CMS
ev	4.03	3.8	3.98	3.8
μν	3.66	3.8	3.42	4.0
combined	4.18	4.2	4.07	4.4
8 TeV	3.17	3.26	3.24	3.28

Drell-Yan dominating background, others of secondary importance

Z' searches: invariant mass distributions $(\mu\mu)$

Drell-Yan dominating background around ITeV, others of secondary importance Fakes insignificant above ~500 GeV

Z' searches: production and upper mass limits

Electron, muon channels combined

	Expected (TeV)		Observed (TeV)		Expected (TeV)		Observed (TeV)	
	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS	ATLAS	CMS
ee	2.85	2.45	2.58	2.40	3.17	2.95	3.18	2.75
μμ	2.32	2.55	2.42	2.40	2.91	3.05	2.98	3.00
combined	2.74	2.80	2.79	2.60	3.37	3.35	3.40	3.15
8 TeV	2.82	2.57	2.51	2.57	2.87	2.90	2.90	2.90

Lepton number violation through Z' and quantum gravity

- Extensions to the SSM Z' model allow lepton-number violating decays to occur by introducing additional _____ couplings
- Quantum black holes could fail to respect lepton number conservation in their decay, and produce eµ final states
 - Assume quantum gravity couples with equal strength to all SM particle degrees of freedom, allowing LFC violation but forbidding local symmetry violation (charge, colour)
 - Assume black hole predominantly decay into twoparticle states
 - ADD model: six extra dimensions (n=6)
 - RS model: one highly warped extra dimension (n=1)
- Very similar to the lepton flavour conserving Z' analysis
- Low background, Drell Yan largely suppressed

Lepton number violation through Z' and quantum gravity

	Expected (TeV)	Observed (TeV)
Z' SSM	3.19	3.01
ADD n=6	4.62	4.54
RS n=1	2.56	2.44

- ATLAS and CMS have well-developed searches in place for heavy counterparts of the W and Z boson
 - Both detectors demonstrate excellent performance in the relevant object reconstruction, and complement each other's strengths
- 2-3 inverse femtobarns of data at 13TeV has already allowed us to push the limits beyond Run-1 for W' and Z' over 1TeV
- In 2016 we expect ~10 times more data
 - What might we see this year? Some very interesting results ahead of us!

Back-up slides

ATLAS

CMS

		ATLAS	CMS
\\\/?	ev	1e > 50 GeV, HCAL isolation at L1 or nonisolated > 60, 120 GeV	1e > 105 GeV or 1e > 115 GeV
W'	μv	1µ > 50 GeV	1μ > 50 GeV, η < 2.4 or 1μ > 45 GeV, η < 2.1
-7,	ee	2e > {17 GeV, 17 GeV} E _T	$\begin{array}{l} 2e > \{ 33 \; \text{GeV}, 33 \; \text{GeV} \} \; E_T \\ \text{Hadronic calo deposits in cone centred} \\ \text{around electron of size } \Delta R = 0.14 \; \text{must be} \\ \text{less than 15\% (barrel) or 10\% (endcaps)} \\ & \text{of the electron energy} \end{array}$
2	μμ	1µ > 26 (isolated) ∥ 50 GeV	1μ > 50 GeV, η < 2.4

Offline selections (W')

		ATLAS	CMS
	ev	1e p _T > 65 GeV "Tight" for pT< 125, "Medium" otherwise Isolated E _{Tmiss} > 65 GeV m _T >130 GeV	1e p _T > 130 GeV Isolated Events with additional electrons > 35 GeV rejected
W'	μv	1μ p _T > 55 GeV Isolated E _{Tmiss} > 55 GeV m _T > 110 GeV	1μ p _T > 53 GeV σ _{pT} /p _T < 0.3 Isolated Events with additional muons > 25 GeV rejected
	Both	Event must have a primary vertex	Δ φ (pτ , p _{Tmiss} > 2.5 0.4 < p _T /E _{Tmiss} < 1.5

Offline selections (Z')

	ATLAS	CMS
ee	2e E _T > 30 GeV Primary vertex Isolated No opposite charge requirement	2e E _T > 35 GeV η _{det} < 1.4442 (barrel) 1.566 < η _{det} < 2.5 (endcap) At least one in the barrel Isolated No opposite charge requirement
μμ	2µ p⊤ > 30 GeV Primary vertex Isolated Opposite charge requirement	2μ > 53 GeV, η < 2.4 Isolated Common vertex fit χ²/dof < 20 Opposite charge requirement

Data driven background estimation (matrix method) 24

- Used to calculate contamination from hadronic jets which are wrongly identified as leptons ("fakes")
 - Singly for W'
 - Together or in combination with a real lepton for Z'
- Idea of the matrix method: express the unknown quantities (number of fake candidates) in terms of quantities that can be measured from data
 - Loosen the lepton ID criteria to produce a "loose lepton" sample
 - Measure how many loose leptons pass the signal selection, use matrix method to link back to the actual fake yield
 - e.g. for W' (similar for Z' but 4x4 matrix due to paired combinations)

$$\begin{array}{c} \text{Measurable} \\ \text{Tight leptons} & \begin{array}{c} & & \\ &$$

 \mathcal{E}_F and \mathcal{E}_R are measured independently (using data driven methods such as tag-and-probe for efficiencies and enriched background samples for fake rates)

W' supplementary results

W' searches: production limits

B [pb]

ь

Source	Electron	channel	Muon channel	
	Background	Signal	Background	Signal
Trigger	negl. (negl.)	negl. (negl.)	3%~(3%)	3% (4%)
Lepton reconstruction and identification	negl. (negl.)	negl. (negl.)	6%~(10%)	5%~(8%)
Lepton isolation	negl. $(negl.)$	negl. $(negl.)$	5%~(5%)	5%~(5%)
Lepton momentum scale and resolution	3%~(3%)	11%~(6%)	49%~(69%)	5%~(21%)
$E_{\rm T}^{\rm miss}$ resolution and scale	< 0.5%~(< 0.5%)	< 0.5%~(< 0.5%)	1%~(1%)	1%~(2%)
Jet energy resolution	$< 0.5\% \ (< 0.5\%)$	< 0.5%~(1%)	$1\% \ (1\%)$	1% (1%)
Multijet background	3%~(19%)	N/A (N/A)	negl. (negl.)	N/A (N/A)
PDF choice for DY production	3%~(13%)	N/A (N/A)	2%~(2%)	N/A (N/A)
PDF variation for DY production	8%~(10%)	N/A (N/A)	6%~(8%)	N/A (N/A)
Luminosity	8%~(4%)	$9\% \ (9\%)$	$9\% \ (9\%)$	$9\% \ (9\%)$
Total	12%~(26%)	14% (11%)	51% (71%)	13%~(25%)

Electrons

	$M_{\rm T}$ >500 GeV	$M_{\rm T} > 1000 {\rm GeV}$	$M_{\rm T} > 1500 {\rm GeV}$
Data	230	11	1.0
SM Background	246 ± 18	14.3 ± 1.2	1.9 ± 0.2
SSM W' M=2.4TeV	66.1 ± 5.5	58.4 ± 5.2	46.3 ± 4.4
SSM W' M=3.6TeV	5.5 ± 0.7	4.9 ± 0.7	4.3 ± 0.6

Muons					
	$M_T > 500 \mathrm{GeV}$	$M_T > 1000 { m GeV}$	$M_T > 1500 \text{ GeV}$		
Data	220	10	0		
SM Background	251.5 ± 8.8	13.0 ± 1.2	1.8 ± 0.3		
SSM W' M=2.4TeV	94.6 ± 5.2	83.9 ± 4.6	65.8 ± 3.6		
SSM W' M=3.6TeV	6.3 ± 0.3	5.7 ± 0.3	5.0 ± 0.3		

MC sample details

- Drell-Yan
 - NLO Powheg-Box v2, CT10 PDF + Pythia8.186 + Photos FSR
 - Normalised as function of mass to NNLO pQCD using VRAP + CT14NNLO PDF
 - Generated in slices to ensure full coverage
- **T**op
 - Powheg-Box v2 (ttbar), Powheg-Box v1 (single top), CT10 PDF + Pythia6.428
 - Normalised to cross section as calculated by Top++2.0
- Diboson
 - Sherpa2.1.1, CT10 PDF
- Signal
 - Pythia8.183, NNPDF23 LO. No interference.WZ decay forbidden.
 - Normalised as per DY samples

W' MC details

	ATLAS	CMS
DY	NLO Powheg-Box v2, CT10 PDF + Pythia8.186 + Photos FSR Normalised as function of mass to NNLO pQCD using VRAP + CT14NNLO PDF Generated in slices to ensure full coverage	W: inclusive in mass - Madgraph 5_aMC@NLO W: high mass slices - Pythia8.2, tune CUETP8M1, NNPDF3.0 PDF Mass dependent k-factor for high MT tails: NNLO QCD using FEWZ 3.2β2, NLO E/W corrections using MSC _{ANC} High mass DY: Powheg
Тор	Powheg-Box v2 (ttbar), Powheg-Box v1 (single top), CT10 PDF + Pythia6.428 Normalised to cross section as calculated by Top++2.0	ttbar: Powheg Single top: Powheg in in t- and tW-channels, aMC@NLO in s-channel
Diboson	Sherpa2.1.1, CT10 PDF	Pythia8.2, tune CUETP8M1, CT10 PDF
Signal	Pythia8.183, NNPDF23 LO. No interference. WZ decay forbidden. Normalised as per DY samples	Pythia8.2, tune CUETP8M1, NNPDF3.0 PDF K-factors to NNLO via FEWZ 3.2β2

Z' supplementary results

Z' searches: production limits

Electron, muon channels separately

EW 2016

Model	Width [%]	ee [TeV]		$\mu\mu$ [TeV]		$\ell\ell$ [TeV]	
MOUEI		Exp	Obs	Exp	Obs	Exp	Obs
$Z'_{ m SSM}$	3.0	3.17	3.18	2.91	2.98	3.37	3.40
Z'_{χ}	1.2	2.87	2.88	2.64	2.71	3.05	3.08
$Z_{ m S}^{\widetilde{\prime}}$	1.2	2.83	2.84	2.59	2.67	3.00	3.03
Z'_I	1.1	2.78	2.78	2.53	2.62	2.95	2.98
$Z_{ m N}^{\prime}$	0.6	2.64	2.64	2.38	2.48	2.81	2.85
Z'_{η}	0.6	2.64	2.65	2.38	2.48	2.81	2.85
Z_ψ^{\prime}	0.5	2.58	2.58	2.32	2.42	2.74	2.79

Source	Diele	ctron	Dimuon		
	Signal	Background	Signal	Background	
Normalisation	4.0% (4.0%)	N/A	4.0% (4.0%)	N/A	
PDF Choice	N/A	9.1%~(17%)	N/A	5.3%~(7.4%)	
PDF Variation	N/A	5.3%~(11%)	N/A	4.4%~(6.5%)	
PDF Scale	N/A	1.8%~(2.3%)	N/A	1.7%~(1.9%)	
Photon-induced corrections	N/A	3.4%~(5.4%)	N/A	3.2%~(3.8%)	
Efficiency	5.1%~(5.0%)	5.1%~(5.0%)	13%~(19%)	13%~(19%)	
Scale & Resolution	<1.0%~(<1.0%)	7.8%~(9.1%)	20%~(26%)	20%~(46%)	
Multi-jet & W +jets	N/A	$< 1.0\% \ (< 1.0\%)$	N/A	N/A	
MC Statistics	<1.0% (<1.0%)	< 1.0% ($< 1.0%$)	<1.0% (<1.0%)	< 1.0% ($< 1.0%$)	
Total	6.5% (6.4%)	15% (24%)	25% (32%)	26%~(51%)	

$m_{ee} [{\rm GeV}]$	500-700	700-900	900-1200	1200-1800	1800-3000	3000-6000
Drell–Yan Top Quarks Diboson Multi-Jet & W+Jets	$\begin{array}{c} 145 \pm 30 \\ 43.8 \pm 2.9 \\ 7.7 \pm 1.1 \\ 4 \pm 4 \end{array}$	38 ± 6 5.4 ± 1.2 1.4 ± 0.5 1.1 ± 0.8	16 ± 4 0.9 ± 0.5 0.39 ± 0.26 0.40 ± 0.16	5.6 ± 1.6 0.09 ± 0.11 0.08 ± 0.12 0.089 ± 0.019	$\begin{array}{c} 0.87 \pm 0.26 \\ 0.002 \pm 0.006 \\ 0.005 \pm 0.030 \\ 0.0042 \pm 0.0014 \end{array}$	$\begin{array}{r} 0.026 \pm 0.012 \\ < 0.001 \\ < 0.001 \\ < 0.001 \end{array}$
Total SM	201 ± 31	46 ± 7	17 ± 4	5.8 ± 1.6	0.88 ± 0.26	0.026 ± 0.012
Data	202	44	17	9	0	0
$\begin{array}{l} \mathrm{SM+}Z'~(m_{Z'}=3~\mathrm{TeV})\\ \mathrm{SM+}\mathrm{CI}~(\Lambda_{\mathrm{LL}}^{-}=25~\mathrm{TeV}) \end{array}$	$201 \pm 31 \\ 207 \pm 31$	$46 \pm 7 \\ 49 \pm 7$	$ \begin{array}{r} 17 \pm 4 \\ 20 \pm 4 \end{array} $	5.9 ± 1.6 8.0 ± 1.6	2.6 ± 1.1 2.11 ± 0.27	1.44 ± 0.34 0.251 ± 0.019
$m_{\mu\mu} [{ m GeV}]$	500-700	700-900	900-1200	1200-1800	1800-3000	3000-6000
Drell–Yan Top Quarks Diboson	110 ± 7 39.5 ± 0.8 3.98 ± 0.32	$27.5 \pm 2.2 \\ 6.7 \pm 0.4 \\ 0.65 \pm 0.11$	$\begin{array}{c} 11.8 \pm 1.1 \\ 0.89 \pm 0.15 \\ 0.229 \pm 0.028 \end{array}$	4.5 ± 0.7 0.046 ± 0.032 0.022 ± 0.006	$\begin{array}{r} 0.70\pm0.08 \\ <0.001 \\ 0.00104\pm0.00034 \end{array}$	$\begin{array}{r} 0.079 \pm 0.023 \\ < 0.001 \\ < 0.001 \end{array}$
Total SM	151 ± 7	35.5 ± 2.3	14.2 ± 1.1	4.6 ± 0.7	0.71 ± 0.08	0.079 ± 0.024
Data	169	28	13	4	0	0
$\begin{array}{l} \mathrm{SM+}Z'~(m_{Z'}=3~\mathrm{TeV})\\ \mathrm{SM+}\mathrm{CI}~(\Lambda_{\mathrm{LL}}^{-}=25~\mathrm{TeV}) \end{array}$	$ 151 \pm 7 162 \pm 8 $	35.5 ± 2.3 38.1 ± 2.4	14.2 ± 1.1 15.3 ± 1.2	4.6 ± 0.7 5.5 ± 0.8	$2.13 \pm 0.26 \\ 0.87 \pm 0.09$	0.8 ± 0.4 0.099 ± 0.035

ATLAS p-value distributions

ATLAS limits for non-resonant (CI) production

Channel	Prior	Left-Left [TeV] Left-		Left-Rig	sht [TeV]	Right-Left [TeV]		Right-Right [TeV]	
		Const.	Destr.	Const.	Destr.	Const.	Destr.	Const.	Destr.
Exp: ee	$1/\Lambda^2$	18.5	15.2	18.1	15.8	17.7	16.1	17.9	15.9
Obs: ee		18.3	15.3	17.6	15.8	17.5	15.9	17.5	15.8
Exp: ee	$1/\Lambda^4$	16.9	14.3	16.6	14.8	16.4	14.8	16.5	14.7
Obs. ee		10.7		10.2	14.0	10.1	14.0	10	14.0
Exp: $\mu\mu$	$1/\Lambda^2$	18.2	14.5	17.5	15.1	17.4	15.4	18.1	14.5
Obs: $\mu\mu$,	20.2	15.8	19.1	17.0	19.4	11.1	20.4	15.8
Exp: $\mu\mu$ Obs: $\mu\mu$	$1/\Lambda^4$	$\begin{array}{c} 16.6 \\ 18.1 \end{array}$	$\begin{array}{c} 13.8\\ 15.0\end{array}$	$16.3 \\ 17.7$	$\begin{array}{c} 14.4 \\ 15.8 \end{array}$	$16.1 \\ 17.4$	$\begin{array}{c} 14.5 \\ 15.9 \end{array}$	$\begin{array}{c} 16.6 \\ 18.1 \end{array}$	$\begin{array}{c} 13.9 \\ 15.0 \end{array}$
		01.4	10.4	01.0	1 🗁 🔥	00.4			10.0
Exp: $\ell\ell$	$1/\Lambda^2$	21.4	16.4	21.0	17.4	20.4	17.7	20.9	16.9
Obs: $\ell\ell$	-/	23.1	17.5	22.1	18.8	21.7	19.0	22.6	17.7
Exp: $\ell\ell$	$1/\Lambda^4$	19.9	15.6	19.0	16.6	18.7	16.6	19.4	16.0
Obs: $\ell\ell$		20.7	16.4	20.0	17.5	19.8	17.6	20.3	16.6

CMS Mee distributions in barrel and endcaps

Z' MC details

	ATLAS	CMS
DY	NLO Powheg-Box v2, CT10 PDF + Pythia8.186 + Photos FSR Mass dependent k-factor to NNLO using VRAP + CT14NNLO PDF Mass-dependent EW corrections at NLO using mcsanc and CT14 PDF set	Powheg2.0, NNPDF3.0 PDF + Pythia8
Тор	Powheg-Box v2 (ttbar), Powheg-Box v1 (single top), CT10 PDF + Pythia6.428 Normalised to cross section as calculated by Top++2.0	Powheg 2.0
Diboson	Sherpa2.1.1, CT10 PDF	Pythia8
Signal	Pythia8.183, NNPDF23 LO. No interference for resonant. For non-resonant, both DY and CI samples generated to account for interference.	Pythia8

Z'→eµ supplementary results

Kinematic variables of e, μ for selected pairs

Kinematic variables of eµ for selected pairs

Local p-value

Expected and observed candidates by data-taking period 45

Source	$m_{e\mu}$ =1.0 TeV		$m_{e\mu}=2.0$ TeV		$m_{e\mu}$ =3.0 TeV	
Source	Signal	Background	Signal	Background	Signal	Background
PDF uncertainties	N/A	11.0%	N/A	27%	N/A	41%
Luminosity	5%	5%	5%	5%	5%	5%
Electron Trigger Efficiency	5%	5%	5%	5%	5%	5%
Electron ID	5%	5%	5%	5%	5%	5%
Muon Reconstruction Efficiency	1%	1%	2%	2%	3%	3%
Electron energy scale and resolution	1%	1%	4%	4%	5%	5%
Muon scale and resolution	7%	7%	15%	15%	20%	20%
Muon Trigger Efficiency	2%	2%	2%	2%	2%	2%
Instrumental backgrounds	N/A	1%	N/A	1%	N/A	1%
Background Extrapolation	N/A	25%	N/A	90%	N/A	400%
MC Statistics	2%	N/A	2%	N/A	2%	N/A
Total	12%	32%	17%	100%	23%	400%

Expected and observed yields

Process	$m_{e\mu} < 300 \text{ GeV}$	$300 < m_{e\mu} < 600 \text{ GeV}$
Тор	900 ± 80	404 ± 50
Diboson	116 ± 13	52 ± 7
QCD and W+jets	67 ± 10	17 ± 4
$Z/\gamma^* o au au$	9.3 ± 1.3	1.79 ± 0.21
Total background	1092 ± 90	476 ± 50
Data	1164	475
Process	$600 < m_{e\mu} < 1200 \text{ GeV}$	$1200 < m_{e\mu} < 2000 \text{ GeV}$
Тор	36 ± 4	0.55 ± 0.31
Diboson	2.6 ± 0.4	$(7 \pm 5) \cdot 10^{-3}$
QCD and W+jets	1.0 ± 0.9	0.12 ± 0.35
$Z/\gamma^* o au au$	0.13 ± 0.01	$(3.5 \pm 1.4) \cdot 10^{-3}$
Total background	40 ± 4	0.67 ± 0.34
Data	36	0
Process	$2000 < m_{e\mu} < 3000$	GeV $m_{e\mu} > 3000 \text{ GeV}$
Тор	$(1.7 \pm 3.4) \cdot 10^{-2}$	$(0.3 \pm 2.6) \cdot 10^{-3}$
Diboson	$(4 \pm 6) \cdot 10^{-5}$	$(0.3 \pm 1.5) \cdot 10^{-7}$
QCD and W+jets	0	0
$Z/\gamma^* o au au$	$(1.9 \pm 2.6) \cdot 10^{-4}$	$(2 \pm 10) \cdot 10^{-5}$
Total background	$(1.7 \pm 3.4) \cdot 10^{-2}$	$(0.3 \pm 2.7) \cdot 10^{-3}$
Data	1	0

$Z' \rightarrow e\mu MC details$

- Z' signal: Pythia8, NNPDF23LO PDF
 - ▶ 25 mass points from 500 GeV to 5TeV
 - No interference
- QBH signal: QBH, CTEQ6L1 PDF + Pythia8
 - ADD and RS models
 - II threshold mass points in 500 GeV steps, from 3-8TeV
- Single top and ttbar: Powheg-Box v2 CTI0 PDF + Pythia6.4.28
- Di-bosons: Sherpa2.1.1, CT10 PDF
- Drell-Yan: Pythia8, NNPDF2.3 PDF
 - k-factors for QCD and EW corrections to NNLO with FEWZ and CT14NNLO PDF