SUSY searches with one or more leptons from ATLAS and CMS

Low p_T lepton final states @13TeV in ATLAS and CMS Moriond EWK, 17 March 2016

This talk: SUSY searches with one or more leptons

- Interpretation usually done in simplified [SUSY] models
 - However, results can be interpreted in non-SUSY models as well

Setting the scene

Early SUSY searches mostly aiming at gluino-induced production: Large cross-section gains w.r.t. 8 TeV Which signal models?

I lepton

$\Delta \phi$ analysis - new for Moriond:

Baseline requirements:

- H_T (scalar sum of jet p_T)>500 GeV
 exactly one hard lepton (p_T>25 GeV)
- L_T (scalar sum of p_T (lep) and MET)>250 GeV
- Analysis binned in #jets, #b-jets, H_T, L_T

• Main discriminating observable: $\Delta \phi$

$\Delta \phi$ - background set in signal

• Signal regions defined by sliding $\Delta \phi$ cut (decreasing for high L_T [L_T:scalar sum of p_T(lep) and MET])

Background estimation

		-			
Analysis	Multi-b analys	sis	Zero-b analysis		
n _{b-tag}	$n_{\rm b-tag} = 0$	$n_{\text{b-tag}} \ge 1$	$n_{\rm b-tag}=0$	$n_{\rm b-tag} = 1$	
$n_{\rm jet}=3$	OCD Fit (el sample)		$R_{CS}(W^{\pm})$ det. (μ sample),		
$n_{\rm jet} = 4$	QCD I II (cl. sample)	R _{cc} det	QCD Fit (el. sample)	$R_{cc}(t\bar{t}) det$	
$n_{\rm jet}=5$		Nes uct.	MB	Res(ii) dei.	
$n_{\rm jet} \ge 6$		MB			

- Low Δφ (CR) → high Δφ (SR) ratio R_{cs}, determined in low #jet sideband
- 0-b: separate W+jets and tt R_{cs}, fractions determined in data with #b-jet fit
- Multi-b: one R_{cs} for all EWK
- Dominant systematic uncertainty: #jetextrapolation from dileptonic control sample

Prediction/Observation

SUS-15-006 Δφ (0b;≥1b)

Background predictions and observations agree: Putting limits in

T5qqqWW $\begin{bmatrix} 2015-076\\ lep, jet, MET \end{bmatrix}$ $\hat{Y}_{EXPERIMENT}$ and T1tttt $\begin{bmatrix} SUS-15-007\\ MJ \ (\geq Ib) \end{bmatrix}$ 2, 3,... leptons

M_J analysis

- \blacktriangleright Main discriminating observables: m_T and M_J
- m_T: transverse mass of lepton and MET; suppresses 1L-ttbar; 2Lttbar remains
- ▶ M_J : Scalar sum of the masses of large-R jets (*)
- $M_J = \sum_{J_i = \text{large} R \text{ jets}} m(J_i) J_i$ clustered with R=1.2 from AK4PF-jets and leptons

1 lepton, jets, MET

- Hard lepton: target large mass splittings between gluino, chargino, neutralino with hard leptons and jets
- Soft lepton: target small mass splittings between gluino, chargino, neutralino

- Main backgrounds: ttbar and W+jets normalize the MC in control regions
- Small backgrounds from MC
 Signal regions for high m_T and high MET

Which signal models?

suppress the low reducible backgrounds

Same-sign 2L/multileptons

1602.09058 Same Sign - Multileptons

► Signal regions requiring two same sign (or ≥3)ⁿlepton is and \vec{p}_T^{miss} and \vec{p}_T^{miss} jets; varying requirements on #(b)-jets; MET; $m_{\text{eff}}^{\text{inc}} = p_T^{\ell} + \sum_{j=1}^{N_{jet}} p_{T,j} + E_T^{\text{miss}}$

Treatment of backgrounds

|4

1602.09058 Same Sign - Multileptons

Multileptons

- Targeting ~same signals as same-sign analyses
 - categorise events based on #b-jets, HT, MET, on-Z/ other lepton pairs
- Baseline selection: ≥3 well identified leptons, passing p_T > 20,15,10 GeV
 - $m_{\text{llossf}} > 12 \text{ GeV} \rightarrow \text{reject low mass DY}$
 - ▶ #jets $\ge 2 \rightarrow$ reject DY, WZ
 - MET > 50 GeV \rightarrow reject DY

e<

SUS-16-003

Multileptons

NeV

Limits T1tttt

- Putting limits in the neutralino/gluino mass plane
- 1-lep analyses exceed 8 TeV 0...n-lep limit by ≥200 GeV (CMS)/≥300 GeV (ATLAS) in gluino mass

Opposite sign dilepton searches (8 TeV)

 off-Z: Off-shell Z-boson or slepton decays lead to a characteristic

shape in m_{ll}

 Large neutralino-mass difference → more on-Z events

19.4 fb⁻¹ (8 TeV

Standard Mode

Flavour Symmetric Other Backgrounds

 $m(\tilde{g}),\mu=(700,200)GeV$

m(q),u=(900,600)GeV

m. [GeV]

CMS

86 88 90 92 94 96 98

edge

Systematic uncer Data Ge $\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q \overline{q}' \widetilde{\chi}_{2}^{0}, \widetilde{\chi}_{2}^{0} \rightarrow Z \widetilde{\chi}_{2}^{0}$ 35⊢ ATLAS: Excess **ATLAS** Preliminar U¹⁴⁰⁰ **ATLAS** Preliminary = 13 TeV. 3.2 fb Expected limit (±1 o tandard Model (SM റ്റ 30 reestablished at 13 TeV ee+uu ິ ຮັ € 1200 √s=13 TeV, 3.2 fb⁻¹ SR-Z γ* (from γ+jets) • CMS: No excess in "a la $\frac{5}{20}$ lavour symmetric Rare top 1000 WZ/ZZ ATLAS" signal region 800 15 pred./obs.: 12/12 600 10 Revisiting with more 400 200 data this summer... 150 200 250 300 350 400 600 800 900 1000 1100 1200 1300 700 m_{II} [GeV] $m(\tilde{g})$ [GeV] $\widetilde{g}\widetilde{g}, \widetilde{g} \rightarrow q\overline{q}, \widetilde{\chi}_{0}^{0}, \widetilde{\chi}_{0}^{0} \rightarrow Z\widetilde{\chi}_{0}^{0}$ ල් 1400 Expected limit $(\pm 1 \sigma_{exp})$ ATLAS Preliminary Observed limit (±1 σ^{SUSY}_{theory} √s=13 TeV, 3.2 fb⁻¹ SR-Z ප E 1200 1arch 2016

OS dilepton searches (13 TeV)

- CMS: Revisited off-Z excess of 8 TeV analysis
 - SUSY interpretation of 8 TeV excess disfavoured in view of 13 TeV data
- Extensions:
 - introduce b-tag exclusive regions
 - add below-Z/above-Z region

30

25

20

1400

Conclusions

- First round of 13 TeV excitement with Jamboree results in December + Moriond
- Pushed limits beyond 8 TeV results by 200-300 GeV up to m(g) ≥1700 GeV for T1tttt. No huge surprises, yet.

- Broad set of searches done at 13 TeV by ATLAS and CMS with leptons in the final state
- Detectors and methods in good shape, need more data to make another jump in sensitivity

- Expecting ~30 fb⁻¹ this year (Jörg's talk)
 Hopefully it will not be about setting limits this year...
 - ... some places to look at first!

Hopefully the BSM sky clears up this year

Backup

Signal regions CMS (1L)

	2-jet soft-lepton SR	5-jet soft-lepton SR
N _{lep}	= 1	= 1
$p_{\mathrm{T}}^{\ell e(\mu)}$ (GeV)	7(6) - 35	7(6) - 35
$p_{\mathrm{T}}^{\ell_2 e(\mu)}$ (GeV)	< 7(6)	< 7(6)
N _{iet}	≥ 2	≥ 5
$p_{\rm T}^{\rm jet}$ (GeV)	> 180, 30	> 200, 200, 200, 30, 30
$E_{\rm T}^{\rm miss}$ (GeV)	> 530	> 375
$m_{\rm T}~({\rm GeV})$	> 100	-
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm incl}$	> 0.38	-
$H_{\rm T}~({\rm GeV})$	-	> 1100
Jet aplanarity	-	> 0.02

	4-jet high-x SR	4-jet low-x SR	5-jet SR	6-jet SR
N _{lep}	= 1	= 1	= 1	= 1
$p_{\rm T}^{\ell}$ (GeV)	> 35	> 35	> 35	> 35
$p_{\rm T}^{\ell_2}({\rm GeV})$	< 10	< 10	< 10	< 10
N _{iet}	≥ 4	≥ 4	≥ 5	≥ 6
$p_{\rm T}^{\rm jet}$ (GeV)	> 325, 30,, 30	> 325, 150, , 150	> 225, 50,, 50	> 125, 30,, 30
$E_{\rm T}^{\rm miss}$ (GeV)	> 200	> 200	> 250	> 250
$m_{\rm T}~({\rm GeV})$	> 425	> 125	> 275	> 225
$E_{\rm T}^{\rm miss}/m_{\rm eff}^{\rm incl}$	> 0.3	-	> 0.1	> 0.2
$m_{\rm eff}^{\rm incl}$ (GeV)	> 1800	> 2000	> 1800	> 1000
Jet aplanarity	-	> 0.04	> 0.04	> 0.04

Table 5: Results for the edge-like search in all 30 signal regions. The DY contribution to the total background is given separately in the brackets. All signal regions require $E_{\rm T}^{\rm miss} > 150$ if $N_{\rm jets} \ge 2$ or $E_{\rm T}^{\rm miss} > 100$ if $N_{\rm jets} \ge 3$.

		$N_{ extbf{b-jets}} \geq 0$		$N_{b-jets} = 0$	$N_{b-jets} = 0$		
	$m_{\ell\ell}$ range [GeV]	pred. total (DY)	obs.	pred. total (DY)	obs.	pred. total (DY)	obs.
	20 - 70	470.9 ± 29.9	/137	126.7 ± 12.3	122	344.2 ± 23.9	305
	20-70	(4.6 ± 1.3)	437	(3.4 ± 1.0)	152	(1.2 ± 0.3)	303
	70 - 81	132.2 ± 12.6	170	38.2 ± 6.2	33	93.9 ± 10.4	96
	70-01	(2.6 ± 0.7)	129	(2.0 ± 0.6)	55	(0.7 ± 0.2)	90
control	81 - 101	247.9 ± 17.8	271	93.1 ± 10.5	106	154.8 ± 13.4	165
септи	01 - 101	(59.3 ± 7.8)	2/1	(44.4 ± 7.6)	100	(14.9 ± 2.1)	105
	101 - 120	164.7 ± 14.5	163	48.1 ± 7.0	42	116.6 ± 11.8	121
		(2.0 ± 0.6)	105	(1.5 ± 0.5)	74	($0.5\pm0.1)$	
	> 120	467.8 ± 29.9	507	109.9 ± 11.4	1/1	357.9 ± 24.6	366
		(1.5 ± 0.4)	507	(1.1 ± 0.3)	141	($0.4\pm0.1)$	
	20 - 70	107.6 ± 11.9	135	34.7 ± 6.0	45	72.9 ± 9.4	90
		(1.5 ± 0.4)	155	(1.1 ± 0.3)	45	($0.4\pm0.1)$	
	70 - 81	46.6 ± 7.1	50	15.0 ± 3.7	1/	31.7 ± 5.7	36
	70-01	(1.2 ± 0.3)	50	(0.9 ± 0.3)	14	($0.3\pm0.1)$	
forzuard	81 - 101	98.9 ± 10.1	97	44.4 ± 5.9	40	54.5 ± 7.5	52
jorwara	01 - 101	(23.1 ± 3.0)	92	(17.3 ± 2.7)	40	(5.8 ± 1.2)	52
	101 - 120	76.7 ± 9.6	54	22.3 ± 4.7	10	54.3 ± 7.8	35
	101 - 120	(0.9 ± 0.3)	54	(0.7 ± 0.2)	17	($0.2\pm0.1)$	55
	<u>> 120</u>	299.4 ± 25.0	208	84.9 ± 10.3	97	214.5 ± 19.4	206
	> 120	(0.7 ± 0.2)	290	($0.5\pm0.2)$	92	($0.2\pm0.1)$	200

On-Z signal regions

SUS-15-011 Edge/on-Z

Table 4: Results for the on-Z search, binned in all the variables.

Emiss

N_{jets}/H_T	N _{b-jets}	$E_{\mathrm{T}}^{\mathrm{miss}}$	predicted	observed			011]			
		100-150	$28.2 {}^{+5.4}_{-4.8}$	28									
SRA	0	0 150-225 8.7 +	$8.7 {}^{+3.2}_{-1.9}$	6									
	== 0	225-300	$3.3 {}^{+2.5}_{-1.0}$	5	Region	E_{-}^{miss}	Нт	Niets	mee	SF/DF	$\Delta \phi$ (jet ₁₂ , p_{-}^{miss})	$m_{\rm T}(\ell_3, E_{\rm T}^{\rm miss})$	n _{b-iets}
2- 3 jets		> 300	$1.9 \ ^{+1.4}_{-0.7}$	6		[GeV]	[GeV]	Je (3)	[GeV]		/ • 12/1 T	[GeV]	
		100-150	$14.2 \stackrel{+4.4}{_{-3.3}}$	21	Signal regions								
1.1.1 (00)		150-225	$5.8^{+3.4}_{-2.1}$	6	SRZ	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	<i>n</i> _{b-jets}
and $H_T > 400$	≥ 1	225-300	$5.0^{+3.3}$	1	Control regions							$\begin{array}{c c} m_{\rm T}(\ell_3, E_{\rm T}^{\rm miss}) & n_{\rm b-jets} \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	
		> 300	$1.6^{+2.4}$	3	Z normalisation	< 60	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4	-	-
		100.150	$\frac{1.0 - 0.9}{22.1 + 4.9}$	3	CRT	> 225	> 600	≥ 2 ≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF	> 0.4	-	-
	== 0	100-150	23.1 + 3.7 + 3.7	20	Validation region	S							
SRB		150-225	$8.2^{+3.4}_{-2.1}$	10	VRZ	< 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	> 0.4		-
		225-300	$0.8 \ ^{+1.2}_{-0.2}$	2	VRT	100-200	> 600	≥ 2	$m_{\ell\ell} \notin [81, 101]$	SF	> 0.4	-	-
		> 300	$1.5 \substack{+2.4 \\ -0.9}$	0	VRS VR-FS	100-200	> 600 > 600	≥ 2 ≥ 2	$81 < m_{\ell\ell} < 101$ $61 < m_{\ell\ell} < 121$	SF DF	> 0.4	-	-
		100-150	44.6 +7.7	43	VR-WZ	100-200	-	-	-	3 <i>l</i>	-	< 100	0
\geq 4 jets		150-225	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	VR-ZZ VR-3L	< 100 60–100	> 200	≥ 2	$-81 < m_{\ell\ell} < 101$	4ℓ 3ℓ	> 0.4	-	-	
,	≥ 1	225-300											
		> 300	$1.4 {}^{+2.4}_{-0.9}$	3									
	ATLAS	5 - SR:			-								
$H_T + p_T^{l_1} + p_T^{l_2} > 600 \text{ GeV}$	$E_{\rm T}^{\rm miss} > 225 { m GeV}$	$\Delta \phi_{E_{\mathrm{T}}^{\mathrm{miss}}, j_1, j_2} > 0.4$	$12.0 \ _{-2.8}^{+4.0}$	12									

Multilepton signal regions

Njets	N _{b jets}	$E_{\rm T}^{\rm miss}$ (GeV)	$60 \mathrm{GeV} \le H_{\mathrm{T}} < 400 \mathrm{GeV}$	$400\mathrm{GeV} \le H_\mathrm{T} < 600\mathrm{GeV}$	$H_{\rm T} \ge 600 {\rm GeV}$				
	0	50 - 150	SR1	SR3					
	0	150 - 300	SR2	SR4					
	1	50 - 150	SR5	SR7					
> 2		150 - 300	SR6	SR8	SR14				
<u> </u>	2	50 - 150	SR9	SR11					
		150 - 300	SR10	SR12					
	≥ 3	50 - 300	SI						
	inclusive	≥ 300	SR15						

Table 1: multilepton signal region definition

Same-sign signal regions

SUS-15-008 Same Sign

$N_{\rm bjets}$	$M_{\rm T}^{\rm min}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} > 1125{\rm GeV}$	
		50 200	2-4	SR1	SR2		
0	< 120	50 - 200	5+		SR4		
	< 120	200 200	2-4		SR5		
		200 - 300	5+		SR6		
		50 - 200	2-4	SR3	SR7		
	> 120	50 - 200	5+				
	> 120	200 - 300	2-4		SR8		
		200 500	5+				
		50 - 200	2-4	SR9	SR10		
	< 120	30 200	5+		SR12		
	< 120	200 - 300	2-4		SR13		
1		200 500	5+	SR11	SR14	SR32	
1		50 - 200	2-4		SR15		
	> 120		5+				
	> 120	200 - 300	2-4		SR16		
			5+				
		50 - 200	2-4	SR17	SR18		
	< 120	30 200	5+		SR20		
	< 120	200 - 300	2-4		SR21		
2			5+		SR22		
2		50 - 200	2-4	SR19	SR23		
	> 120	30 200	5+				
	> 120	200 - 300	2-4		SR24		
		200 300	5+				
2 -	< 120	50 - 200	2+	SR25	SR26		
	< 120	200 - 300	2+	SR27	SR28		
Эт	> 120	> 50	2+	SR29	SR30		
inclusive	inclusive	> 300	2+		SR31		

Table 3: Signal region definitions for the HH lepton selection.

Table 4: Signal region definitions for the HL lepton selection.

N _{b jets}	$M_{\rm T}^{\rm min}$ (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	Njets	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} > 1125{\rm GeV}$
		50 200	2-4	SR1	SR2	
0	< 120	50 - 200	5+		SR4	
	< 120	200 - 300	2-4	SR3	SR5	
		200 300	5+		SR6	
		50 - 200	2-4	SR7	SR8	
1	< 120	50 200	5+		SR10	
		200 - 300	2-4	SR9	SR11	
			5+		SR12	
		50 - 200	2-4	SR13	SR14	SR26
2	< 120		5+		SR16	
	< 120	200 200	2-4	SR15	SR17	
		200 300	5+		SR18	
3_	2 < 120	50 - 200	2+	SR19	SR20	
	< 120	200-300	2+	SR21	SR22	
inclusive	> 120	50 - 300	2+	SR23	SR24	
inclusive	inclusive	> 300	2+		SR25	

Table 5: Signal region definitions for the LL lepton selection. The $H_T > 300$ GeV requirement is applied in all search regions in this category.

N _{b jets}	$M_{\rm T}^{\rm min}$ (GeV)	$H_{\rm T}$ (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}} \in [50 - 200] \mathrm{GeV}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$		
0	< 120		SR1	SR2		
1	< 120		SR3	SR4		
2	< 120	> 300	SR5	SR6		
3+	< 120		SR7			
inclusive	> 120		SR8			