All hadronic $t\overline{t}H (H \rightarrow b\overline{b})$ with the ATLAS detector

Daniele Madaffari

October 29, 2015 PESBLADe meeting

October 29, 2015

Outline

- Introduction to fully hadronic $t\overline{t}H (H \rightarrow b\overline{b})$ analysis
 - Motivations
 - Analysis preselection
- Modellizzation of event selections from per-jet properties
 - The effect of applying selections to a sample is reproduced by the application of event weights function of jet properties
 - $\diamond~$ Tag Rate function method in MC :TRF_MC
 - $\diamond~$ Tag Rate function method for multijet background : TRF_{MJ}
 - ◊ Trigger selection
- Final discriminant: Boosted Decision Tree
- Systematic uncertainties considered in the analysis
 - Details on TRF_{MJ} method systematics
- ▶ Results of standalone fully hadronic $t\bar{t}H$ and ATLAS $t\bar{t}H$ combination
 - $t\overline{t}H$ cross section limit and best-fit
 - Higgs couplings
- Conclusions

Introduction

- Fully hadronic $t\overline{t}H (H \rightarrow b\overline{b})$ analysis:
 - tt
 H: Direct acces to Yukawa coupling of Higgs boson to top-quark (Y_t)
 - $H \rightarrow b\overline{b}$: the largest barching ratio of SM Higgs (56%)
 - Full hadronic $t\overline{t}$ BR = 46%
 - First measurement at the LHC
- Multijet final state: ~ 8 jets, ~ 4 b-jets:
 - Multi-jet trigger:
 - $\diamond~$ At least 5 jets with $E_{\mathcal{T}}~>~55~{\rm GeV}$

Offline requirements:

- At least 5 jets with p_T > 55 GeV
- Other jets with p_T > 25 GeV
- b-tagging: MV1 with 60% efficiency WP
- Lepton veto
- Main background: Multijet production (MJ)
 - Data driven description through dedicated technique: $\mathsf{TRF}_{\mathsf{MJ}}$
- Other backgrounds:
 - $t\overline{t}$ + jets, $t\overline{t}V$, single top
 - Using TRF_{MC} method to enhance statistics of MC samples

PESBLADe meeting

Event description from per-jet properties

Selections on event quantities can be described as function of properties of the jets in the event

- To each jet it is possible to associate an efficiency ε_j depending on
 - Jet p_T , η , flavour (in MC only)
 - Relation of the jet with other jets in the event, like ΔR
- Event weights W are evaluated as function of the per-jet efficiencies: W = f(ε₁,..., ε_N)
- The effect of applying a selection to a sample is reproduced by the application of the event weights to each event in the sample

Benefit:

Avoid loss of statistics

Tag Rate Function method for MC: TRF_{MC}

b-tagging selection is described by the application of event weight $W = f(\varepsilon_1, \ldots, \varepsilon_N)$

- ε(p_T, η, flavour) = probability of the jet to be b-tagged
- W = probability to have n_b number of *b*-tagged jets in the events
- Using full MC data set without any b-tagging requirement
 - Avoid loss of statistics when selecting events with high b-tag multiplicities
- TRF_{MC} method predicts normalization and shapes of variables
 - TRF_{MC} method allows to select a configuration of jets to consider *b*-tagged based on the probability of the configuration itself

October 29, 2015

PESBLADe meeting

Trigger efficiency and SF

• Trigger selection emulated by the application of event weight $W = f(\varepsilon_1, \ldots, \varepsilon_N)$

- Using full MC data set without trigger requirement
 - $\varepsilon(p_T, \eta) = \text{probability to fire a trigger chain}$
 - W = probability to have at least 5 trigger chains
 - Trigger efficiency estimation validated in MC
- Max signal acceptance reached by requiring as low offline p_T cut as possible
 - Trigger plateau: 5th leading jet offline p_T > 65 GeV
 - Analysis selection: 5th leading jet offline p_T > 55 GeV
- Working below plateau requires estimating data/MC trigger Scale Factors (SF)
 - SF is evaluated comparing per-jet trigger efficiencies in data and PYTHIA8 di-jet MC
 - Sample dependance, derived in MC, is assigned as systematic uncertainty

PESBLADe meeting

MJ background estimation: TRF_{MJ} method

- TRF_{MJ} method is a data-driven method
- **b**-tagging selection modelled by application of event weight $W = f(\varepsilon_{MJ,1}, \dots, \varepsilon_{MJ,N})$
 - $\varepsilon_{MJ}(p_T, \eta, \left< \Delta R_{(j,hMV1)} \right>) = \text{probability to be } b\text{-tagged}$
 - $\diamond~\varepsilon_{\rm MJ}$ is evaluated in data in a dedicated MJ dominated sample
 - \diamond True flavour of the jet is unknown in data, $\langle \Delta R_{(j, \text{hMV1})} \rangle$ sensitive to heavy-flavour production

♦ $\langle \Delta R_{(j,hMV1)} \rangle$: Average of the distances of the jet from the two jets with the highest MV1 weight

- TRF_{MJ} method is applied in regions where the amount of MJ background is known
 - Regions with exactly 2 *b*-tagged jets
 - MJ (2b) = DATA (2b) $\sum MC_{background}$ (2b)

Special mathematical treatment to estimate MJ in non-overlapping regions

• W linked to the probability to have $n_b = 3$ or ≥ 4 number of b-tagged jets

$\mathsf{TRF}_{\mathsf{MJ}}$ validation in data and MC

Closure test is performed applying

TRF_{MJ} method in data and MC

- Data: TRF_{MJ} extraction sample
 - Normalizations agree within 5%
 - Good shapes description

Data	3j,3b	\geq 4j, 3b	\geq 4j, \geq 4b
TRF _{MJ}	632 ± 4	7952 ± 25	452 ± 2
Direct <i>b</i> -tag	641	7585	425

≥4j, 3b

- TRF_{oct}

VC: 0 900

2² p-value: 0.537

00 600 800 1000 Leading b-jet p_ [GeV]

MC: PYTHIA8 di-jet

- Normalizations agree within 6%
- Good shapes description
 - Plots are made using sub-sample with more statistics

Di-jet MC	\geq 4j, 3b	\geq 4j, \geq 4b
TRF _{MJ}	15.5 ± 0.1	0.89 ± 0.01
Direct <i>b</i> -tag	14.6 ± 0.5	0.9 ± 0.1

PESBLADe meeting

Boosted Decison Tree

 Boosted Decision Trees (BDT) are trained one for each fit region
Signal : ttH, inclusive in top and Higgs decays
Background : Multijet + all MC backgrounds

Input variables selection:

Start with a pool of interesting variables (\sim 35)

- Rank the best variables
 - Iteratively add one variable in the BDT training and select the one giving the best improovement in the discrimination
 - Stop when the addition of more variables does not improove the performance anymore
 - i.e. Reach a plateau in the BDT performance -
 - Roughly 11 variables per region

Systematics on TRF_{MJ}: description of ε_{MJ} I

Different sets of variables have been used to parametrize $\varepsilon_{\rm MJ}$

► Variables used: p_T , $|\eta|$, Min $\Delta R_{(j,hMV1)}$

Min $\Delta R_{(i,hMV1)}$: Minimun ΔR between the jet and the two with highest MV1 weight

► Variables used: p_T , $\langle \Delta R_{(j,hMV1)} \rangle$, MV1 ΔR

October 29, 2015

PESBLADe meeting

Systematics on TRF_{MJ}: description of ε_{MJ} II

Different sets of variables have been used to parametrize ε_{MJ}

► Variables used: p_T , Min $\Delta R_{(j,j)}$, MV1 ΔR

Min $\Delta R_{(i,j)}$: Minimum ΔR between the jet and any other jet

► Variables used: p_T , Min $\Delta R_{(i,hMV1)}$, MV1 ΔR

Systematics on TRF_{MJ}: description of ε_{MJ} III

Different sets of variables have been used to parametrize $\varepsilon_{\rm MJ}$

► Variables used: p_T , $|\eta|$, Min $\Delta R_{(i,hMV1)}$, MV1 ΔR

Systematics on TRF_{MJ}: description of ε_{MJ} IV

(7j, 3b)

BDT

0.5

BDT

Daniele Madaffari

(6j, 3b)

Arbitary units ≥8i.3b + Multi-let background TRF. L = 20.3 fb TRF₈₀ systematic varia 0.25 - Lowest MV1 S=8 TeV + Random MV1 KS: 0.849 T p .hl.Min\R D P, <1RGMV0>,MV1 3P y² p-yalue: 0.177 0 p, Min AR MVI AR P Min ΔR₃MIVT ΔR
A
P Min ΔR₃MIVT ΔR
A
P Min ΔR₃MIVT ΔR
A
P
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0.15 0.05 Ratio 0.6 0.4 BDT (≥8j, ≥4b) units ≥81.≥4b + Multi-jet background - TRF TRF_{NJ} system L = 20.3 fb Arbitary - Lowest MV1 5 = 8 TeV Random MV1 0.25 KS: 0.281 χ² p-value: 0.486 0 P Min ∆R_{3MINT} MV1 ∆R
 ★ p Min ∆R_{3MINT} h| MV1 ∆R
 0.15 0 0.05 Ratio 1 0. -0.5 0.5

(≥8j, 3b)

BDT 13/24

Systematics on TRF_{MJ}: residual mismodeling

- Mismodeling is obesrved for H_T and S_t variables in the TRF_{MJ}extraction region
- A reweight, evaluated in the same region, is applied to compensate for this effect
- H_T reweight:
 - Mismodelling is observed in ≥ 4 b-tag regions
 - Reweight is applied to ≥ 4 b-tag regions only
- + Cut-based b-taggin - Cut-based b-tage L = 20.3 fb⁻¹ Arbitary L = 20.3 m⁻¹ TRE TRF 0.35 0.3 5 = 8 TeV S = 8 TeV 0 3 0.2 0.1 0.1 0. 0 0.0 0.0 Ratio Ratio 1 n 0.4 400 600 800 1000 1200 1400 160 200 400 600 800 10001200 H_r [GeV]

- S_t reweight:
 - Mismodelling is observed in all regions

H_r [GeV]

Systematics on TRF_{MJ} : independence of reweight

- The two reweights are independent
 - Reweght w.r.t H_T has no effect on S_t and vice-versa

H_T reweight

S_t reweight

Systematics on TRF_{MJ}: effect of reweight

Systematics on TRF_{MJ} : effect of reweight – BDT

H_T reweight \Rightarrow

S_t reweight \Rightarrow

Systematics uncertainties

MJ background estimation:

Shape:

- 5 components for ε_{MJ} description
- 2 components for b-tagged jet selection
- 2 components for *H*_T and *S*_t residual mismodeling Normalization:
- 6 SF, MJ normalization free floating in each region
- Jet Energy scale:
 - Split in 22 uncorrelated components
- b-tagging:
 - b/c/light-tagging split into 6/6/12 uncorrelated components
- tt +jets modelling
 - Shape and normalization uncertainties derived from variation of renormalization scale and PDF
- $t\bar{t}$ +HF normalizations
 - 50% on $t\overline{t} + b\overline{b}$, 50% on $t\overline{t} + c\overline{c}$
- top p_T reweighting
 - Scale variation, shower model and PDF for $t\overline{t} + b\overline{b}$ reweighting
 - 9 leading systematic uncertainties from differential tt cross-section measurement

Δμ

Pre- and post-fit yields

-		C 1 • •				
υ	ro	tit.	1		d	C •
	I E-	III.	- V	ICI	u	э.
			_			

			· · · · · · · · · · · · · · · · · · ·			
	6j,3b	6j,≥4b	7j,3b	7j,≥4b	8j,3b	8j,≥4b
Multijet	16400 ± 130	1100 ± 33	12500 ± 12	1100 ± 33	10600 ± 100	1300 ± 36
single top	170 ± 63	6.0 ± 3.7	140 \pm 55	8.3 ± 4.6	110 \pm 50	$11~\pm~5.9$
$t\overline{t} + V$	14 ± 6.3	1.8 ± 1.5	22 ± 9.0	3.5 ± 2.3	40 ± 15	8.0 ± 4.2
$t\overline{t} + b\overline{b}$	330 ± 180	44 ± 26	490 ± 270	87 ± 51	760 \pm 450	190 ± 110
$t\overline{t} + c\overline{c}$	280 ± 170	17 ± 12	390 ± 240	$21\pm$ 15	560 \pm 350	48 ± 33
$t\overline{t} + light$	1500 ± 400	48 ± 18	1370 \pm 400	45 ± 18	1200 ± 500	40 ± 23
tŦH (125)	13 ± 4.5	3.3 ± 2.1	21 ± 6.2	7.0 ± 3.2	42 ± 11	16 ± 6.1
Total bkg.	18700 ± 500	1200 ± 50	14960 ± 580	1300 ± 65	13380 ± 77	1650 ± 130
Data	18508	1545	14741	1402	13131	1587

Post-fit yields:

	6j,3b	6j,≥4b	7j,3b	7j,≥4b	8j,3b	8j,≥4b
Multijet	16000 ± 320	1400 ± 66	12000 ± 350	1230 ± 78	10000 ± 490	1300 ± 100
single top	$180~\pm~59$	6.7 ± 3.6	153 ± 12	9.4 ± 4.4	120 \pm 47	12 ± 5.7
$t\overline{t} + V$	15 ± 6.2	1.9 ± 1.5	23 ± 8.9	3.6 ± 2.1	43 ± 15	8.7 ± 4.2
$t\overline{t} + b\overline{b}$	230 ± 120	31 ± 17	340 ± 190	63 ± 34	560 \pm 320	140 \pm 75
$t\overline{t}+c\overline{c}$	350 ± 170	22 ± 11	490 ± 240	28 ± 15	740 \pm 360	66 ± 32
$t\overline{t} + light$	1750 ± 270	55 ± 13	1650 ± 340	54 ± 19	1500 ± 450	54 ± 21
ttH (125)	21 ± 6.1	5.5 ± 2.7	35 ± 8.6	11 ± 4.4	71 ± 15	27 ± 8.4
Total bkg.	18500 ± 310	1540 ± 61	14700 ± 300	1400 ± 69	13100 ± 340	1590 ± 72
Data	18508	1545	14741	1402	13131	1587

Pre- / post-fit comparisons

161

10

1.2

TLAS Interna

= 20.3 fb

Pre-fit:

4.0

Post-fit:

October 29, 2015

PESBLADe meeting

Daniele Madaffari

20/24

Post-fit variables

(6j, 3b)

≥⁶⁰⁰⁰ ATLAS Internal dt = 20.3 fb⁻¹ + Data 2012 500 Single top AllHad 4000 Multiple KS prob

post-fit

₫+V ti+o2

άH

tiab^E

ti+light

30

25

200

Pe 1.2

0.03

(6j, ≥4b)

ti+b6

ti+07

ti+ight

Total unc.

(≥8j, 3b)

3500

3000

2500

1500

1000

50

Paul 1.25

0.

October 29, 2015

atLAS Internal post-fit ATI AS Internal post-fi άH L dt = 20.3 fb⁻¹ + Data 2012 L dt = 20.3 fb⁻¹ + Data 2012 700 ti+b6 Single top E - R Told tí+V ti+c7 60 AllHad > 8 i AIHad > 8 Multijet ti+light Multipl KS prob.: 0 14 50 Total unc. 2000 400 300 200 10 1.2 5 150.7 0. 180 200 - 60 S_T [GeV]

(≥8j, ≥4b)

$t\overline{t}H (H \rightarrow bb)$ combination

October 29, 2015

PESBLADe meeting

Daniele Madaffari

-45

-3.5

22/24

-1 -0.5

log (S/B)

Run 1 $t\bar{t}H$ combination

Higgs couplings:

Best-fit of couplings modifiers κ_V and κ_F is compatible with SM prediction within 1 σ

Conclusions

- First fully hadronic $t\bar{t}H (H \rightarrow b\bar{b})$ analysis ever performed
- Description of the tools used in the analysis
 - TRF_{MC} method for emulation of *b*-tagging selection in MC
 - Evaluation of trigger efficiency and SF
 - TRF_{MJ} data-driven method to model MJ background
 - $\diamond~$ Events with exactly 2 b-tags are used to describe events with exactly 3 and ≥ 4 b-tagged jets
- Description of the main systematic uncertainties
 - TRF_{MJ} method shape systematics: 5 parametrization of $\varepsilon_{\rm MJ}$ + 2 reweighting
 - $\diamond~$ MJ normalization free floating in the fit
 - Uncertainty on $t\overline{t} + b\overline{b}$ cross section is the leading uncertainty of the analysis
- Results of the standalone analysis
 - Best fit signal strength value $\mu = 1.6 \pm 2.6$
 - 95% CL upper limit observed (expected) 6.4 (5.4) \times SM cross section
- Results of the combination with all $t\bar{t}H$ ATLAS channels
 - Best fit signal strength value $\mu = 1.7 \pm 0.8$
 - 95% CL upper limit observed (expected) 3.1 (1.4) \times SM cross section
 - Best-fit of couplings modifiers κ_V and κ_F is compatible with SM within 1 σ

Back-up

Analysis strategy

PESBLADe meeting