

Composite Higgs Dark Matter Models

LESPINASSE Mickael

March 30th, 2016

Collaboration with Tsinghua University

- ⇒ PICS application made it to the last stage of evaluation, but was not funded.
- ⇒ In 2015, Ma Teng visited IPNL for 6 months.
- ⇒ In January 2016, G.Cacciapaglia, H.Cai and M.Lespinasse visited Tsinghua.

Tsinghua: Wang Qing (Prof), Zhang Bin (Prof), Ma Teng (PhD), Shengzhi Zhao (PhD)

 $\begin{array}{l} \textbf{IPNL}: \mbox{Giacomo Cacciapaglia (CNRS), Aldo Deandrea (Prof), Haiying Cai (CDD), Mickael Lespinasse (PhD) \end{array}$

1 published paper, 2 in preparation.

Table of contents

- Motivations
- $SU(6) \rightarrow Sp(6)$
- $SU(4)_L \times SU(4)_R \rightarrow SU(4)_D$
- Conclusion

Table of contents

- Motivations
- $SU(6) \rightarrow Sp(6)$
- $3 SU(4)_L \times SU(4)_R \rightarrow SU(4)_D$
- Conclusion

Motivations

Standard Model

- Very good agreement with experience
- Discovery of the last piece of the puzzle in 2012 : a Higgs boson
- But..... still incomplete.

Motivations

Standard Model

- Very good agreement with experience
- Discovery of the last piece of the puzzle in 2012 : a Higgs boson
- But..... still incomplete.

Some Standard Model problems

- --- Higgs sector not explained, only modelised.
- Non natural (hierarchy problem, fine tuning).
- → No dark matter candidate.

Motivations

Standard Model

- Very good agreement with experience
- Discovery of the last piece of the puzzle in 2012 : a Higgs boson
- But..... still incomplete.

Some Standard Model problems

- Higgs sector not explained, only modelised.
- Non natural (hierarchy problem, fine tuning).
- No dark matter candidate.

Composite Higgs models

- → Potential comes from dynamics.
- → Higgs mass protected.
- → Could contain dark matter candidates.

Ingredients:

- New gauge interaction (QCD-like)
- New fermions
- Global flavor symmetry

Ingredients:

- New gauge interaction (QCD-like)
- New fermions
- Global flavor symmetry

Principle?

Break the global symmetry of the new fermions

Ingredients:

- New gauge interaction (QCD-like)
- New fermions
- Global flavor symmetry

Principle?

Break the global symmetry of the new fermions

How?

After condensation of the new fermions

Ingredients:

- New gauge interaction (QCD-like)
- New fermions
- Global flavor symmetry

Principle?

Break the global symmetry of the new fermions

How?

After condensation of the new fermions

Why?

Global symmetry breaking \Rightarrow Goldstone bosons

Ingredients:

- New gauge interaction (QCD-like)
- New fermions
- Global flavor symmetry

Principle?

Break the global symmetry of the new fermions

How?

After condensation of the new fermions

Why?

Global symmetry breaking \Rightarrow Goldstone bosons

Okay but where is the Higgs?

The Higgs is a Goldstone boson, bound state of these new fermions

Table of contents

- Motivations
- $SU(6) \rightarrow Sp(6)$
- $3 SU(4)_L \times SU(4)_R \rightarrow SU(4)_D$
- Conclusion

Setup

[M.Lespinasse, G.Cacciapaglia in prep.]

- $\rightarrow SU(6)$ is the global flavor symmetry
- \rightarrow Sp(6) is the remaining symmetry after condensation

Setup

[M.Lespinasse, G.Cacciapaglia in prep.]

- $\rightarrow SU(6)$ is the global flavor symmetry
- \rightarrow Sp(6) is the remaining symmetry after condensation

EW symmetry:

$$\underbrace{SU(2)_L \times SU(2)_{R1}}_{SU(2)_L \times U(1)_Y} \times SU(2)_{R2}$$
 or $\underbrace{SU(2)_L \times SU(2)_{R2}}_{SU(2)_L \times U(1)_Y} \times SU(2)_{R1}$

Different ways of breaking SU(6) down to Sp(6):

- \triangleright Preserving $SU(2)_L \times U(1)_Y$
- Breaking $SU(2)_L \times U(1)_Y$

Different ways of breaking SU(6) down to Sp(6):

- \triangleright Preserving $SU(2)_L \times U(1)_V$
- Breaking $SU(2)_I \times U(1)_V$

1

Different ways of aligning the vacuum

- $\triangleright \Sigma_R \rightarrow \text{Preserves the EW symmetry}$
- $\triangleright \Sigma_{R1,R2} \rightarrow \text{Breaks the EW symmetry (Technicolor)}$

Composite Higgs vacuum : $\Sigma_0 \left(\theta, \beta \right) an eta = rac{
u_2}{
u_1}$

Some results

 \Rightarrow Mass term for the gauge bosons :

$$m_W^2 = 2g_1^2 f^2 \sin^2 \theta$$
 et $m_Z^2 = 2(g_1^2 + g_2^2) f^2 \sin^2 \theta$

Some results

⇒ Mass term for the gauge bosons :

$$m_W^2 = 2g_1^2 f^2 \sin^2 \theta$$
 et $m_Z^2 = 2(g_1^2 + g_2^2) f^2 \sin^2 \theta$

Standard Model results:

$$(m_W^{SM})^2 = \frac{1}{4}g_1^2v^2$$
, $(m_Z^{SM})^2 = \frac{1}{4}(g_1^2 + g_2^2)v^2$ et donc $v = 2\sqrt{2}f\sin\theta$

Experimentally: $v \simeq 246 \text{GeV}$

Some results

⇒ Mass term for the gauge bosons :

$$m_W^2 = 2g_1^2 f^2 \sin^2 \theta$$
 et $m_Z^2 = 2(g_1^2 + g_2^2) f^2 \sin^2 \theta$

Standard Model results:

$$(m_W^{SM})^2 = \frac{1}{4}g_1^2v^2$$
, $(m_Z^{SM})^2 = \frac{1}{4}(g_1^2 + g_2^2)v^2$ et donc $v = 2\sqrt{2}f\sin\theta$

Experimentally : $v \simeq 246 \text{GeV}$

 $\Rightarrow h$ couplings :

$$g_{hWW} = g_{hWW}^{SM} \cos \theta$$
 $g_{hZZ} = g_{hZZ}^{SM} \cos \theta$

Where could Dark Matter came from in this model? (Currently under investigation)

Where could Dark Matter came from in this model? (Currently under investigation)

• The singlets?

Maybe. Two of them decay via anomalies, the other four mix. Is there an exact symmetry that prevents the singlets to decay?

Where could Dark Matter came from in this model? (Currently under investigation)

- The singlets ? Maybe. Two of them decay via anomalies, the other four mix. Is there an exact symmetry that prevents the singlets to decay?
- One doublet ? Maybe, depending on the Yukawa couplings and β angle.

Table of contents

- Motivations
- $2 SU(6) \rightarrow Sp(6)$
- $3 SU(4)_L \times SU(4)_R \rightarrow SU(4)_D$
- Conclusion

Setup

T.Ma, G.Cacciapaglia 1508:07014

- $\rightarrow SU(4)_L \times SU(4)_R$ is the global flavor symmetry
- $\rightarrow SU(4)_D$ is the remaining symmetry after condensation

Setup

T.Ma, G.Cacciapaglia 1508:07014

- $\rightarrow SU(4)_L \times SU(4)_R$ is the global flavor symmetry
- $\rightarrow SU(4)_D$ is the remaining symmetry after condensation

EW symmetry embedding:

	$SU(2)_L$	$U(1)_Y$
ψ_L	2	0
ψ_R	1	$\pm 1/2$

Symmetry breaking very similar to the SU(6) case. The breaking can :

 \triangleright Preserve $SU(2)_I \times U(1)_V$

Break $SU(2)_L \times U(1)_V$

Symmetry breaking very similar to the SU(6) case. The breaking can :

 \triangleright Preserve $SU(2)_I \times U(1)_V$

 \triangleright Break $SU(2)_L \times U(1)_V$

1

Misalignement of the vacuum parameterized by two angles θ and β $\tan \beta = \frac{v_2}{v_1}$

Where could Dark Matter came from in this model?

Where could Dark Matter came from in this model?

• The singlet? No, it decays via anomaly.

Where could Dark Matter came from in this model?

- The singlet? No, it decays via anomaly.
- The inert doublet ? Yes, depending on the Yukawa couplings.

Where could Dark Matter came from in this model?

- The singlet ? No, it decays via anomaly.
- The inert doublet? Yes, depending on the Yukawa couplings.
- The triplets ? Yes, depending on the Yukawa couplings.

Calculation of relic abundance in $SU(4)_L \times SU(4)_R$ model

[T.Ma, S.Zhao, B.Zhang, G.Cacciapaglia in prep.] (preliminary)

Table of contents

- Motivations
- $2 SU(6) \rightarrow Sp(6)$
- $3 SU(4)_L \times SU(4)_R \rightarrow SU(4)_D$
- Conclusion

▶ Some problems of the SM we need to solve

- ▶ Some problems of the SM we need to solve
- One appealing way to do it: Composite Higgs models

- Some problems of the SM we need to solve
- One appealing way to do it: Composite Higgs models
- Composite Higgs models could contain DM candidates.

- > Some problems of the SM we need to solve
- One appealing way to do it: Composite Higgs models
- Composite Higgs models could contain DM candidates.
- $SU(6) \rightarrow Sp(6)$: minimal 2HDM case. Two singlets could be DM candidates if there is an exact symmetry which protects them.

- Some problems of the SM we need to solve
- One appealing way to do it: Composite Higgs models
- Composite Higgs models could contain DM candidates.
- $\gt SU(6) \rightarrow Sp(6)$: minimal 2HDM case. Two singlets could be DM candidates if there is an exact symmetry which protects them.
- $\gt SU(4)_L \times SU(4)_R \to SU(4)_D$: Next to minimal 2HDM case. Inert doublet and triplets can be DM candidates depending on Yukawa couplings.

Thanks for your attention.