$H \rightarrow \gamma \gamma$ results at $\sqrt{s} = 13$ TeV

Camilo Carrillo

9th France China Particle Physics Laboratory (FCPPL) Workshop

Institute de physique Nuclear de Lyon (IPNL) 30/03/2016

Table of contents

- The accelerator and its experiments
 - LHC
 - The experiment
- The BEH Boson
- CMS $H \rightarrow \gamma \gamma$ results (Run-II)
 - $H \rightarrow \gamma \gamma$ analysis overview
 - $H \rightarrow \gamma \gamma$ selected results

The Large Hadron Collider Run-I, pp collisions at \sqrt{s} = 7 TeV and 8 TeV

- LHC excellent performance in 2011 and 2012
- $\int L dt \approx 25 fb^{-1}$ at $\sqrt{s} = 7$ and 8 TeV
- Peak Instant Luminosity: $L = 7.7 \times 10^{-33} \text{ cm}^{-2} \text{s}^{-1}$

CMS Integrated Luminosity, pp

The Large Hadron Collider Run-II, pp collisions at \sqrt{s} = 13 TeV

• LHC 2015 in two lines:

$$\approx 2 \times \sqrt{s_{run-I}}$$
$$\approx 0.2 \times \int L dt_{run-I}$$

- $\int L dt \approx 4 f b^{-1}$ at $\sqrt{s} = 13 \text{ TeV}$
- Max Instant Luminosity: L = 5.13 Hz/nb
- Not all CMS collected lumi with B=3.8 Tesla

The experiment

- Big collaborations
 (≈4000/experiment)
- Multi purpose experiments
- LHC data efficiency recording (used for analysis) > 90% during Run-I.
- Robust Muon systems and $e\gamma$ -calorimeters (crystals(CMS) and liquid argon(ATLAS)).

Multiple collisions per bunch crossing, a challenge for the experiments

- Due to the increase in luminosity, more than one collision happen during a bunch-crossing in the LHC, this is called pile up (PU).
- 2011 average PU \approx **10**, for 2012 average PU \approx **20**.
- Particle flow algorithm helps a lot in high PU events.
- ullet Less energy resolution for e and γ
- Central jet veto and VBF jet tagging affected.
- At peak lumi for LHC Run-II at $\sqrt{s} = 13 \, TeV$ we expected PU ≈ 40

However... Slide from 8^{th} FCPPL @ HEFEI 2015 by C. Carrillo Expected Integrated luminosity for run-II 2015 ≈ 10 fb⁻¹

- Conservative β^* to start
- Conservative bunch population
- Assuming same machine availability as 2012

	Nc	Beta *	ppb	EmitN	Lumi [cm ⁻² s ⁻¹]	Days (approx)	Int lumi	Pileup
50 ns	1300	80	1.2e11	2.5	4.8e33	21	~1 fb ⁻¹	25
2015.1	2592	80	1.1e11	2.5	7.6e33	30	3 fb ⁻¹	21
2015.2	2592	40	1.1e11	2.5	1.2e34	48	8 fb ⁻¹	34

				2	2	0	1	5	;						2016						2017						2018																										
T	JF	M	1	٩Ι	М	J	J	Α	s	C	1	N	D	J	F	Μ	I A	N	1	J	J	Α	S	0	N	D	J	F	F	4	Α	М	J	J	Α	s	0	N	D	J	F	Ν	1/	۱	М	J	J	Α	s	0	N	D	Ī
																											Ε'	YE	ET	s																			LS	52			

Shutdown/Technical stop
Protons physics
Commissioning
Ions

The BEH Boson

Production, decay, and what we have learned form run-I

Higgs production modes

Higgs Decays, branching ratios

A detailed view for the mass measurements, run-I

Combined ATLAS+CMS measurement of the Higgs boson mass: $m_H = 125.09 \pm 0.24$ GeV

Higgs Signal Strength, from run-I

Parameter value

CMS $H \rightarrow \gamma \gamma$ results (Run-II)

CMS-HIG-15-005

 $H \rightarrow \gamma \gamma$ results at $\sqrt{s} = 13$ TeV

13 / 21

The overview CMS analysis

- Photon Energy resolution
- Correct Vertex identification
- Maximize S/B using

Vertex Identification

- MVA using Σp_T^2 , Σp_T of vertex tracks
- Diphoton balancing with vertex tracks
- Estimator of correct ID probability propagated to photon categorization

$$\sum_{i} |\vec{p_T^i}|^2$$
, $-\sum_{i} (\vec{p_T^i} \cdot \frac{\vec{p_T^{\gamma\gamma}}}{|\vec{p_T^{\gamma\gamma}}|})$ and $(|\sum_{i} \vec{p_T^i}| - p_T^{\gamma\gamma})/(|\sum_{i} \vec{p_T^i}| + p_T^{\gamma\gamma})$

- Validated using Z → μ⁺μ⁻ events where the vertices are refitted ignoring the muon tracks to mimic a diphoton system.
- In addition, \(\gamma + \) jet events are used to validate the use of tracks from converted photons to locate the vertex.

- Shower shape observables
- Isolation variables based on the sums of the p_T of photons, and of charged hadrons, within regions of $\Delta R \leq 0.3$
- The energy median density per unit area in the event, ρ , makes the BDT independent of pileup
- Photon kinematic observables (pseudorapidity and energy)

Di-Photon Identification

- Use vertexing, photon information, kinematics to produce classifier that indicates the expected diphoton resolution
- Divide events into 4 categories based on output of classifier →
- Other categories:
 - TTH events require a b-tag AND (lepton+≥2j OR ≥ 4j)
 - VBF events tagged additional, similar multivariate discriminator (2 categories)

Transformed diphoton BDT classifier score

Signal/Background Model

Signal:

- The $m_{\gamma}\gamma$ distributions are fitted using a sum of at most five Gaussians.
- The model is constructed by interpolating with a spline each parameter between individual mass points.
- The analytic functions for each production mode are summed together and weighted to obtain the final function in each category.

Background:

- Discrete profiling or "envelope" method (Bernstein polynomials, Laurent series and power-laws)
- Range of functions considered that fit bkg.

$\gamma\gamma$ spectrum, run-I & run-II CMS-ATLAS

 $\begin{array}{c} H \rightarrow \gamma \gamma \\ \textbf{run-I} \end{array}$

 $H \rightarrow \gamma \gamma$ run-II

CMS Signal Strenght, split by categories

Significance:

- Observed : 1.7σ
- Expected (at 125.09 GeV): 2.7σ

$$\hat{\mu} = 0.69^{+0.47}_{-0.42}$$

at fixed m_H=125.09GeV

Conclusions

- Run-II 2015 is a low statistics sample when compared to run-I, $\approx 2 \times \sqrt{s_{run-I}}, \approx 0.2 \times \int L dt_{run-I}$
- First 13 TeV measurements of scalar decays to $\gamma\gamma$
- Both experiments: fix mass to run 1 measurement $m_H = 125.09 \pm 0.24$ GeV, much more precise than constraints from Run 2 data.
- Extensive search for deviations from the SM prediction in:
 - Higgs production kinematics
 - Signal strength in all categories of all observable final states and Higgs coupling strength
- All results show consistent within errors with the Standard Model Hypothesis
- Looking forward for the rest of run-II

Backup

BACKUP

Perspective for the LHC during the next 10 years

- Run-I center of mass energy is just $\approx \frac{1}{2}$ of the designed for the LHC
- Run-I is a small portion of the expected integrated luminosity for the life-time of the LHC.
- Nevertheless we have a discovery!

A little bit further into the future

- This could be the window to new physics.
- Reducing $\frac{\Delta\mu}{\mu}$ could show as a deviations from the SM

Run-II year by year ($\approx 100 fb^{-1}$)

	Peak lumi E34 cm ⁻² s ⁻¹	Days proton physics	Approx. int lumi [fb ⁻¹]
2015	1.3	100	10
2016	1.5	160	35
2017	1.7	160	45
2018	1.7	40	10

0.2

0.4 Δμ/μ

Analysis Overview

	Η→γγ	H→ZZ	H→WW	Η→ττ	H→bb	H→Zγ	Н→μμ
gg→H	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS		ATLAS CMS	ATLAS CMS
VBF	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS		ATLAS CMS	ATLAS CMS
VH	ATLAS CMS	ATLAS CMS	ATLAS CMS	- CMS	ATLAS CMS	ATLAS CMS	- CMS
ttH	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS	ATLAS CMS		

comprehensive coverage of all Higgs/SM physics cases

Search for additional Higgs Beyond the Standard Model (2HDM)

- The addition of doublet in the Higgs sector is one of the simplest possible extensions
- ullet 2HDMs and the MSSM are fully compatible with a SM-like Higgs boson with mass $\approx 125~\text{GeV}$

X750GeV

X750GeV

- \blacktriangleright Largest excess observed at $m_{\chi} = 750 \text{GeV}$ and for narrow width.
 - **Local** significance: **3.4**σ
 - Taking into account mass range 500-3500GeV (and all signal hypotheses), "global" significance becomes 1.6σ

X750GeV Unofficial combination @ Moriond

- Repeat fits from digitised plots @13 TeV and @8TeV [Jamboree analyses]
- Compute significance vs experiment, energy, production mechanism, and width
 - in general, quoted significance smaller than what experiments quote

X750GeV Unoficial combination @ Moriond

ADVISORY A Private CMS+ATLAS Combination ADVISOR

					5000		
Spin o Narrow	ATLAS narrow	CMS narrow	Combined narrow	ATLAS wide	CMS wide	Combined wide	
8 TeV	-	1.2 σ	1.2 σ	-	1.7 σ	1.7 σ	
13 TeV	3.2 σ	2.0 σ	3.4 σ	3.5 σ	2.0 σ	3.0 σ	2
Combined	n.a.	n.a.	3.4 σ	n.a.	n.a.	3.4 σ	

- Both for large and small width, the large ATLAS Run II excess is pushed down by CMS Run II + CMS/ATLAS Run I
- The average close to CMS central value, but with reduced uncertainty

Lepton momentum scale

e γ energy reconstruction stability

systematic errors $\gamma \gamma$

Camilo Carrillo (IPNL)

An event display, $m_{\gamma\gamma} = 125.9 \, GeV$

event display tth

event display vbf

Low mass Higgs in $\gamma\gamma$ resonances

Additional Higgs at a lower mass (down to $m_H=60 \,\text{GeV}$ for run-II)

- Few words about this search in this presentation.
- Presentation about Run-I Sijing Z. (IPNL/IHEP) today.
- For Run-II, a High Level Trigger selections were implemented in CMS to extend our search during run-II.

CMS low mass

ATLAS Cross section

No split by categories/production-mode public yet.

\sqrt{s}	Measured total cross section [pb]	LHC-XS prediction [pb]
7 TeV	$35 \pm 12 \text{ (stat.)} \pm 4 \text{ (syst.)} \pm 1 \text{ (lumi.)}$	17.5 ± 1.6
8 TeV	$30.5 \pm 7.1 \text{ (stat.)} ^{+2.6}_{-2.5} \text{ (syst.)} \pm 0.9 \text{ (lumi.)}$	22.3 ± 2.0
13 TeV	$40 \pm 26 \text{ (stat.)} ^{+16}_{-10} \text{ (syst.)} \pm 2 \text{ (lumi.)}$	50.9 +4.5 -4.4