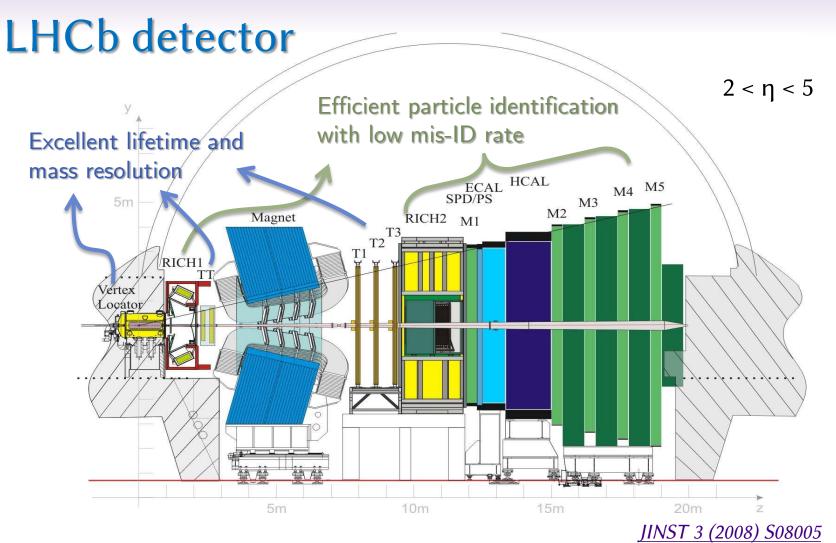
B_c physics at LHCb

Yiming Li 李一鸣 (LAL)
On behalf of the LAL-Tsinghua LHCb group


01 April 2016, 9th FCPPL workshop @ Strasbourg

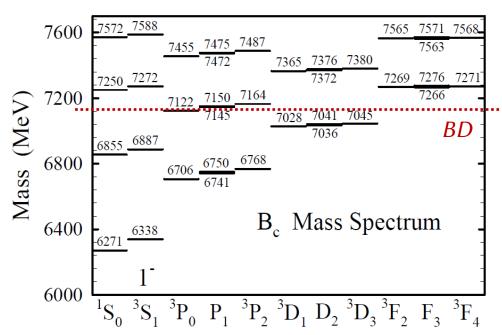
LAL-Tsinghua collaboration

- Started in 2006
- Current members:
 - Tsinghua: Zhenwei Yang, Yuanning Gao, Liupan An
 - LAL: Patrick Robbe, Marie-Hélène Schune, Sergey Barsuk, Yiming Li
- Main research activities in 2015:
 - B_c physics at LHCb
 - in collaboration with Bo Liu, Giulia Manca (Cagliari/LAL) Jibo He (UCAS)
 - Run II commissioning
- In LHCb b-hadrons and quarkonia Working Group:
 - Zhenwei Yang: WG convenor
 - Yiming Li: b-hadrons and Bc subWG convenor
 - Liupan An: Simulation and stripping liaison of the WG

LAL-Tsinghua collaboration

- Long term exchanges
 - Jibo He
 - Tsinghua PhD → LAL postdoc → CERN fellow → UCAS researcher
 - Wenbin Qian
 - Embassy co-tutelle PhD → LAPP Annecy postdoc → Oxford postdoc
 - Bo Liu
 - Tsinghua PhD (CSC student 1 yr @LAL) → Cagliari postdoc
 - Yiming Li
 - Tsinghua postdoc → LAL postdoc

 $\mathcal{L}_{ ext{int}}$ (pp collision) :


Run I : 1 fb⁻¹ @ 7 TeV + 2 fb⁻¹ @ 8 TeV

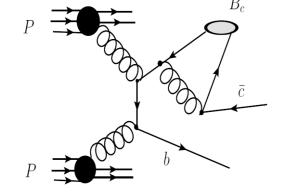
Run II: 320 pb⁻¹@ 13 TeV

B_c mesons

- $^{_{\blacksquare}}$ B_c is the only meson (family) in SM formed by two different heavy flavour quarks
- Similar to charmonia and bottomonia, a rich spectrum expected
- Below BD threshold all excited states decay to the ground state
- The ground state decays only weakly
- B_c has a much shorter lifetime than other B mesons

Godfrey, PRD70 (2004) 054017

LHCb public results on B_c


Production		New decay ar	New decay and BF ($B_c^+ \rightarrow$)	
$\frac{\sigma(B_c^+)\mathcal{B}(B_c^+\to J/\psi\pi^+)}{\sigma(B^+)\mathcal{B}(B^+\to J/\psi K^+)}$	PRL 109 (2012) 232001	$J/\psi\pi^+\pi^-\pi^+$	PRL 108 (2012) 251802	
$\frac{\sigma(B_c^+)}{\sigma(B_s^0)}\mathcal{B}(B_c^+\to B_s^0\pi^+)$	PRL 111 (2013) 181801	$\psi(2S)\pi^+$	PRD 87 (2013) 071103 (R)	
$\frac{\sigma(B_c^+)\mathcal{B}(B_c^+\to J/\psi\pi^+)}{\sigma(B^+)\mathcal{B}(B^+\to J/\psi K^+)}$ vs. $dp_{\mathrm{T}}dy$	PRL 114 (2015) 132001		PRD 92 (2015) 072007	
Mass		$J/\psi K^+$	JHEP 09 (2013) 075	
$M(B_c^+\to J/\psi\pi^+)$	PRL 109 (2012) 232001	$J/\psi D_{S}^{(*)+}$	PRD 87 (2013) 112012	
$M(B_c^+ \to J/\psi D_s^+)$	PRD 87 (2013) 112012	$J/\psi K^+K^-\pi^+$	JHEP 1311 (2013) 094	
$M(B_c^+\to J/\psi p\bar{p}\pi^+)$	PRL 113 (2014) 152003	$J/\psi 3\pi^+ 2\pi^-$	JHEP 1405 (2014) 148	
Lifetime		$J/\psi par p\pi^+$	PRL 113 (2014) 152003	
$\tau(B_c^+\to J/\psi\mu\nu)$	EPJC 74 (2014) 2839	$\mathcal{B}(J/\psi\pi^+)/\mathcal{B}(J/\psi\mu\nu)$	PRD 90 (2014) 032009	
$\tau(B_c^+\to J/\psi\pi^+)$	PLB 742 (2015) 39	$B_s^0\pi^+$	PRL 111 (2013) 181801	

LAL/Tsinghua's role

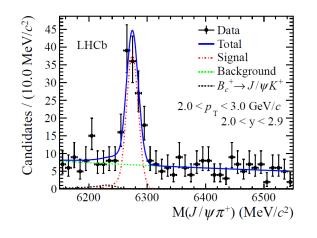
Production		New decay and BF ($B_c^+ \rightarrow$)	
$\frac{\sigma(B_c^+)\mathcal{B}(B_c^+\to J/\psi\pi^+)}{\sigma(B^+)\mathcal{B}(B^+\to J/\psi K^+)}$	PRL 109 (2012) 232001	$J/\psi\pi^+\pi^-\pi^+$	PRL 108 (2012) 251802
$\frac{\sigma(B_c^+)}{\sigma(B_s^0)}\mathcal{B}(B_c^+\to B_s^0\pi^+)$	PRL 111 (2013) 181801 Involved in ma	nv of these	PRD 87 (2013) 071103 (R)
$\frac{\sigma(B_c^+)\mathcal{B}(B_c^+\to J/\psi\pi^+)}{\sigma(B^+)\mathcal{B}(B^+\to J/\psi K^+)} \text{ vs. } dp_{\mathrm{T}}dy$	PRL 114 (2015) 132001 A few recent of		PRD 92 (2015) 072007
M		erential production	JHEP 09 (2013) 075
$M(B_c^+\to J/\psi\pi^+)$	PRL 109 (2012) 232001	$J/\psi D_s^{(*)+}$	PRD 87 (2013) 112012
$M(B_c^+ \to J/\psi D_s^+)$	PRL 109 (2012) 232001 First baryon PRD 87 (2013) 112012 Decay BF or PRL 113 (2014) 152003	$J/\psi K^+K^-\pi^+$	JHEP 1311 (2013) 094
$M(B_c^+ \to J/\psi p \bar{p} \pi^+)$	PRL 113 (2014) 152003	$I(\boldsymbol{\psi}(\mathbf{Z}\mathbf{S})\mathbf{R}^+)$ $I/\psi 3\pi^+ 2\pi^-$	JHEP 1405 (2014) 148
Life	time	$J/\psi p \bar{p} \pi^+$	PRL 113 (2014) 152003
$\tau(B_c^+ \to J/\psi \mu \nu)$	EPJC 74 (2014) 2839	$\mathcal{B}(J/\psi\pi^+)/\mathcal{B}(J/\psi\mu\nu)$	PRD 90 (2014) 032009
$\tau(B_c^+ \to J/\psi \pi^+)$	PLB 742 (2015) 39	$B_s^0\pi^+$	PRL 111 (2013) 181801

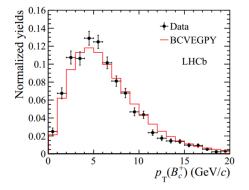
B_c^+ Production

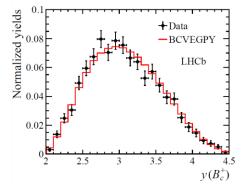
- \blacksquare B_c is produced mainly through gluon-gluon fusion at hadron colliders.
 - Only accessible at high energy hadron colliders with high luminosity
- Production cross-section grows fast wrt \sqrt{s}
 - $\sigma_{\rm LHC}/\sigma_{\rm Tevatron} \sim \mathcal{O}(10)$
 - $\sigma(B_c^+) \sim 0.47 \; \mu b \; @ \sqrt{s} = 8 \; \text{TeV}$ $\sim 0.9 \; \mu b \; @ \sqrt{s} = 14 \; \text{TeV};$
- \blacksquare A considerable fraction of B_c^+ from higher states
 - $\sim 1/3$ from $B_c(2S)$, $\sim 10\%$ from $B_c(1P)$
- Predictions based on NRQCD factorization using fixed-order approach
 - BCVEGPY generator used in LHC simulations
 C-H Chang et al,
 Comput.Phys.Commun. 174 (2006) 241

Double differential production

PRL 114, 132001 (2015)

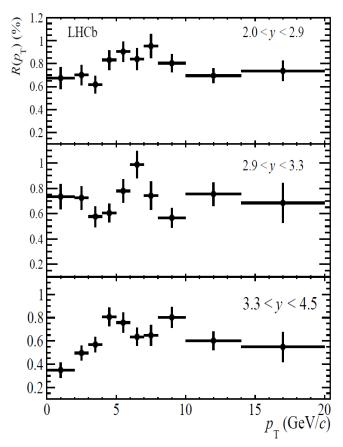

 $R = \frac{\sigma(B_c^+)\mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+)\mathcal{B}(B^+ \to J/\psi K^+)}$


- Cross-section measured in $B_c^+ \to J/\psi \pi^+$ decay, relative to $B^+(\to J/\psi K^+)$
 - 2 fb⁻¹@ 8 TeV, 0 $< p_{\rm T} <$ 20 GeV, 2 < y < 4.5
 - $R = (0.683 \pm 0.018 \pm 0.009)\%$
 - Consistent with 7 TeV result


$$(0.68 \pm 0.10 \pm 0.03 \pm 0.05 (\tau_{B_c}))\%$$
, $p_{\rm T} > 4$ GeV, $2.5 < \eta < 4.5$

PRL 109 (2012) 232001

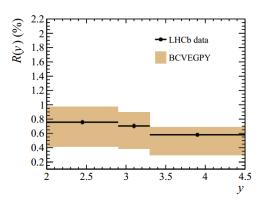
- Lower than CMS as expected, $\because B_c^+ \ p_{\rm T}$ softer than B^+ (0.48 \pm 0.05 \pm 0.03 \pm 0.05(au_{B_c}))% , $p_{\rm T}>$ 15 GeV, $|{\rm y}|<$ 1.6 JHEP 01 (2015) 063
- The sufficient statistics allow double differential ratio measurement



BcVegPy well describes the p_{T} , y spectrum

Double differential production

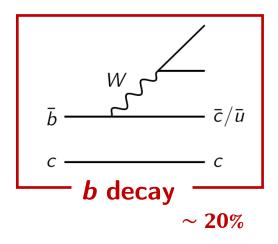
PRL 114, 132001 (2015)



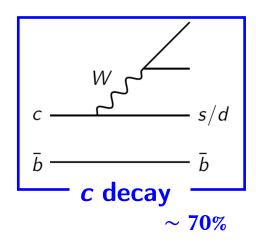
in collaboration with Bo Liu, Giulia Manca (Cagliari/LAL)

$$R(\mathbf{p}_{\mathsf{T}}, \mathbf{y}) = \frac{\sigma(B_c^+)\mathcal{B}(B_c^+ \to \mathbf{J}/\psi\pi^+)}{\sigma(B^+)\mathcal{B}(B^+ \to \mathbf{J}/\psi K^+)}$$

Arr R as function of $p_{\rm T}$, y agrees with theory (FONLL for B, BcVegPy for B_c)

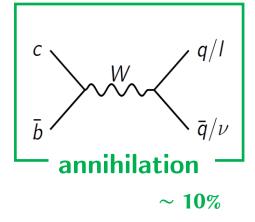

```
Normali- \sigma(B_c^+) = 0.47 \,\mu\text{b}, theoretical prediction by BcVegPy zation: \sigma(B_c^+) = 0.47 \,\mu\text{b}, theoretical prediction by BcVegPy \sigma(B_c^+) = 0.33\% [C.-F. Qiao et al., PRD 89 (2014) 034008]
```

* $\sigma(B^+, p_T(B) < 40 \text{ GeV}/c, 2.0 < y < 4.5) = 38.9 \,\mu\text{b}$ at $\sqrt{s} = 7 \text{ TeV}$, measured by LHCb [JHEP 08 (2013) 117], scaled up by 1.2 for 8 TeV


* $\mathcal{B}(B^+ \to J/\psi K^+) = (0.1016 \pm 0.0033)\%$, PDG'12

B_c^+ decays

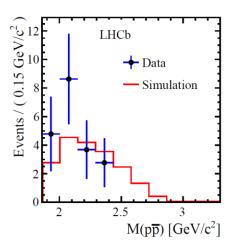
With an additional c quark, B_c^+ has a larger variety of decay modes & shorter lifetime than other B mesons

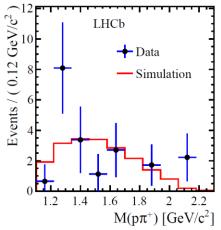


- with $c\bar{c}$ easier to detect esp. $\rightarrow \mu^+\mu^-$
- Most observed channels in this category

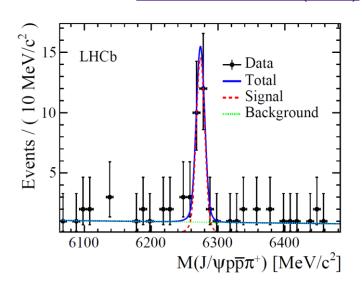
 $B_c^+ \rightarrow B_S^0 \pi^+$ observed
LHCb, PRL 111, 181801 (2013)

PDG 2015:
$$\tau = 0.507 \pm 0.009 \text{ ps}$$


Not observed yet. K*K, φK...


First baryonic decay

 $B_c^+ \to J/\psi p \bar{p} \pi^+$


• N = 23.9
$$\pm$$
 5.3 (7.3 σ)

$$rac{\mathcal{B}(B_c^+ o J/\psi p \bar{p} \pi^+)}{\mathcal{B}(B_c^+ o J/\psi \pi^+)} = 0.143^{+0.039}_{-0.034} \pm 0.013$$

PRL 113, 152003 (2014)

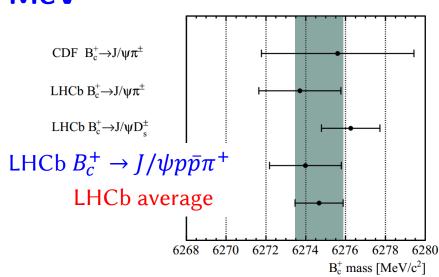
 $M(p\bar{p}), M(p\pi^+)$ consistent with phase space decay within statistical uncertainties

Mass measurement

PRL 113, 152003 (2014)

- PDG 2012: 6277 ± 6 MeV
- LHCb measured the mass in several final states:
 - $B_c^+ \to J/\psi \pi^+$: 6273.7 \pm **1.3** \pm **1.6** MeV (0.37 fb⁻¹) *PRL* 109 (2012) 232001
 - $B_c^+ \to J/\psi D_s^+$: 6276.28 \pm **1.44** \pm **0.36** MeV (3 fb⁻¹) PRD 87 (2013) 112012
- Though statistically limited, $B_c^+ \to J/\psi p \bar{p} \pi^+$ has very small Q-value

$$M = 6274.0 \pm 1.8 \pm 0.4 \text{ MeV}$$


LHCb average:

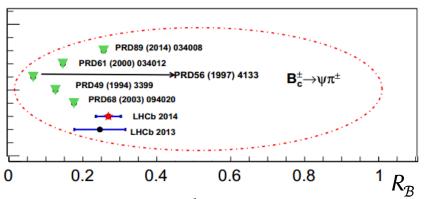
$$6274.7 \pm 1.2 \text{ MeV}$$

Consistent with lattice QCD

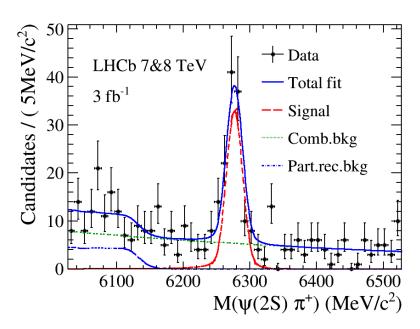
prediction: 6278(4)(8) MeV

HPQCD, PRD 86 (2012) 094510

$B_c^+ \to \psi(2S)\pi^+$ relative BF


Phys. Rev. D 92 (2015) 072007

- $B_c^+ \to \psi(2S)\pi^+$ first observed with 1 fb⁻¹ LHCb data
- Recently updated
 - With full Run I data
 - Improved BDT selection


PRD 87 (2013) 071103(R)

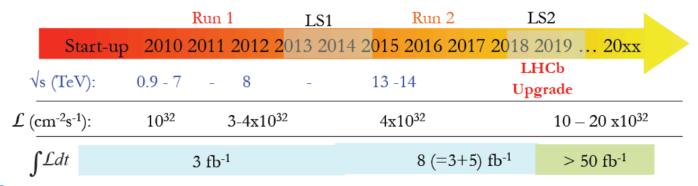
$$R_{\mathcal{B}} = rac{\mathcal{B}(B_c^+ o \psi(2S)\pi^+)}{\mathcal{B}(B_c^+ o J/\psi\pi^+)}$$

- $R_B = 0.268 \pm 0.032 \text{ (stat)} \pm 0.007 \text{ (syst)} \pm 0.006 \text{ (BF)}$
 - Consistent with 7 TeV result $0.250 \pm 0.068 \pm 0.014 \pm 0.006$

* start to gain discriminating power between models

14

Some ongoing work


- Search for excited state
 - ATLAS observe peaking structure in $B_c\pi^+\pi^-$ invariant mass, consistent with $B_c(2S)$ likely mixture of 2^1S_0 and 2^3S_1
 - $M = 6842 \pm 4 \pm 5 \text{ MeV}$
 - Search for similar state @ LHCb

- Search for new decays
 - Triply charmed decay $B_c^+ \to J/\psi D^{(*)} K^{(*)}$
 - Potentials in D_{SI} study in DK system
 - Very small Q-value, good for mass measurement

Summary and perspectives

- \blacksquare LAL-Tsinghua collaboration keeps active in B_c studies at LHCb
- Run II has started with a smooth commissioning year of 2015
 - Increase in \sqrt{s} could be more surprises than increase in σ
 - Many improvements, e.g. more effective trigger : 5 (Run I) → 12.5kHz (Run II) to storage
- LHCb upgrade planned during LS2 will open more opportunities:
 - Increased luminosity
 - Higher efficiency for hadronic final states by >2
 - Important for B_c hadronic channels, starting working on it

