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“Lost Energy”/Medium Response: New ideas needed!?
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With EMCal/DCal in RUN 2, ALICE 
could repeat and extend potentially 
significantly the precision due to 
better low pT tracking capabilities!

wrt to di-jet axis?
(tagged via AJ)

ALICE has significant expertise in correlation measurements! 
Can we define new or extend currently established analysis 
incorporating the jet axis (or 3 particle type correlations) to get a 
new handle on the “lost energy” and medium response!?



Jet Production in Heavy-Ion Collisions
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Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios: 
1) In-cone radiation: RAA = 1, change of fragmentation 
2) Out-of-cone radiation: RAA < 1

Le3cia$Cunqueiro$ 2$

Jets%in%pp,%p*Pb%and%Pb*Pb%

Measure$$jets$in$pKPb$and$PbKPb$collisions$and$study,$rela3ve$to$pp,$$
$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$jet$yield$suppression$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$modifica3on$of$the$transverse$energy$profile$or$broadening$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$dijet$or$hadronKjet$acoplanarity$$
$
to$understand$mechanisms$of$energy$loss$of$partonic$projec3les$in$(colored/nuclear)$medium$
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

• Jet: a spray of particles from hard parton fragmentation — get closer access 
to parton energy

• Out-of-cone radiation: energy loss in jet cone — RAA < 1

➡ Jet yield suppression, jet v2, dijet or hadron–jet acoplanarity…

• In-cone radiation: medium modified fragmentation — RAA = 1

➡ Jet shape broadening, modification of transverse energy profiles…

• Hard partons — produced before the QCD medium 
forms, interact with the hot and dense medium

➡ Efficient probes for understanding the transport 
properties of the medium

RAA(pT) =
dNAA/dpT

< TAA > d�pp/dpT

QCD medium

QCD vacuum



Jet Measurement with ALICE 3

• Tracking: |η|<0.9, 0<φ<2π
• TPC: gas drift detector
• ITS: silicon detector

• EMCal: |η|<0.7, 1.4<φ<π
• a Pb-scintillator sampling 

calorimeter

Charged-particle correction: prevents 
energy double counting

Neutral 
constituents

Charged 
constituents
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Jet Yield Suppression 4

• Agreement between ALICE and ATLAS

➡ Contribution of low momentum jet fragments to jet energy is small

• RCP of jets and single hadrons are compatible

➡ Indication that the momentum is redistributed to larger angles

22

Jets and parton energy loss

Motivation: understand parton energy loss by tracking the gluon radiation

Qualitatively two scenarios: 
1) In-cone radiation: RAA = 1, change of fragmentation 
2) Out-of-cone radiation: RAA < 1
• ATLAS: calorimetric jets

• ALICE: charged-particle jets — more 
sensitive to the low-momentum fragments



Semi-inclusive Recoil Jet 5

Leticia Cunqueiro Hard Probes 2013
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Semi-inclusive recoil jet distribution

Inclusive trigger selection
 Select randomly one of the hadrons that
 fall in the given trigger class (T|T)
 →calculable in pQCD
Semi-inclusive recoil jet yield:
 Count the number of jets in the recoil region 
 and normalize by the number of triggers

 Increase hadron trigger p
T  
→higher Q2  process →harden recoil jet spectrum

Jet finding is collinear 
safe with minimal IR cutoff
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trg
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T,jet]trg � [1/N

ref
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T,jet]ref

• Recoil-jet ratio — consistent with PYTHIA reference

➡ Intra-jet energy profile is not changed significantly for R < 0.5

➡ Significant in-medium radiation to angles > 0.5 rad

• Width of Φ(jet,trigger) — similar in Pb–Pb and pp collisions

➡ No evidence for medium-induced acoplanarity

ALICE, JHEP 09 (2015) 170



Energy loss and medium geometry
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Jet Azimuthal Anisotropy 6

• Central collisions (0–5%): null-hypothesis can not be excluded (1.5~2σ)

➡ Initial-state fluctuations (?)

• Semi-central collisions (30–50%): non-zero v2 (3σ effect)

➡ Information of path-length dependence of parton in-medium energy loss

• Compatible with single particle and calo-jet v2 at high pT (with different 
energy scales)

➡ Large parton energy loss and that is sensitive to the collisions geometry

Energy loss and medium geometry
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Jet Shapes 7

• Radial momentum (g) — pT-weighted width of jet

• g shifted to lower values in Pb–Pb data relative to PYTHIA — indication of 
more collimated jet cores in data

• pTD — dispersion of jet constituents

• pTD shifted to large values relative to PYTHIA — indication of few jet 
constituents and large dispersion
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Sub-jet Structure: Proposed Observable
8

• Smaller radius/area — reduces the background fluctuations and pile-up

• Opening the degree of freedom in jets — details of fragmentation with 
decreased dependence on hadronic DOFs, provides sensitivity to details of 
the parton radiation/shower

• Different multiplicity of sub-jets in the two models — sub-jet production is 
sensitive to quenching mechanisms
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• Sub-jets: re-clustering the constituents 
in a jet (possibly a different algorithm)

X. Zhang et al, arXiv:1512.09255



Sub-jet Structure: Proposed Observable
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• The local background for the two sub-jets is (to a large extend) similar

• use the pT difference between the two leading sub-jets

• In the leading order (FastJet median background subtraction):

Background terms cancel out for locally uniform background
�psj12T = psj1T � ⇢BG ⇥Asj1 ± �BG(Asj1)� (psj2T � ⇢BG ⇥Asj2 ± �BG(Asj2))
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Tests on a realistic LHC heavy-ion background show a promising behavior

X. Zhang et al, arXiv:1512.09255
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Sub-jet Structure: Proposed Observable
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• A jet by jet selection on Δzsj carries little experimental difficulties (both in pp 
and AA)

• Differences for Δzsj selected jets with respect to inclusive RAA:

• For large Δzsj: RAA suppressed in Q-PYTHIA but enhanced in JEWEL

• The opposite behavior for small Δzsj

• Small R-jet dependence only for Q-PYTHIA

Note: These are shown as examples 
— different selections on sub-jet pT 
difference possible - e.g. moments of 
the distributions, etc

RAA(�zsj) =
d�medium/dpT|�zsj

d�vacuum/dpT|�zsj

X. Zhang et al, arXiv:1512.09255



Λ/KS
0 Ratio in Jets 11
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• The enhanced ratio of Λ/KS0 at inter-median pT of inclusive V0s in p–Pb and 
Pb–Pb collisions relative to pp collisions is not present within the jet region

• Baryon enhancement does not origin from modified jet fragmentation

• Results independent on jet radii and disfavor the hard-soft recombination

p–Pb, minimum bias Pb–Pb, 0-10%



Conclusion 12

• Inclusive and semi-inclusive jet measurements

➡ Jet cores behavior as in vacuum

➡ Significant amount of energy radiated at large angles

• Non-zero v2 of single particles, charged jets and calorimetric jets

➡ Large parton in-medium energy loss, sensitive to collision geometry up to 
high pT

• Jet shapes: jets are more collimated and more pT dispersion in Pb–Pb 
collisions

• Promising observable: sub-jet structure — sensitive to quenching details and 
robust against heavy-ion background

• Λ/KS0 ratio in jets: disfavor the soft-hard recombination mechanism



Backup



Jets in Small Systems 14

Le3cia$Cunqueiro$ 2$

Jets%in%pp,%p*Pb%and%Pb*Pb%

Measure$$jets$in$pKPb$and$PbKPb$collisions$and$study,$rela3ve$to$pp,$$
$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$jet$yield$suppression$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$modifica3on$of$the$transverse$energy$profile$or$broadening$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$K$dijet$or$hadronKjet$acoplanarity$$
$
to$understand$mechanisms$of$energy$loss$of$partonic$projec3les$in$(colored/nuclear)$medium$
$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Study of cold nuclear matter

• Initial state effects:

➡ Color Glass Condensate (CGC)?

➡ nuclear modified Parton Distribution 
Function (nPDF)…

• Final state effects:

➡ parton scattering in cold nuclear matter…

Baseline for heavy-ion collisions:

➡ disentangle the initial state effects from the hot and dense medium 
produced in the final state of the heavy-ion collisions



Comparison with Theoretical Models
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• Good agreement between data and models within errors

➡ both models fitted to the single particle RAA

JEWEL: JHEP 1303 (2013) 080, Eur. Phys. J. C74 (2014) 2762
YaJEM: Phys. Rev. C78 (2008) 034908, Phys. Rev. C84 (2011) 067902


