Production of muons from heavy-flavour hadron decays in Pb-Pb collisions at the LHC

Zuman Zhang for the ALICE Collaboration

Work done with Xiaoming Zhang, Nicole Bastid, Philippe Crochet, Dacui Zhou

Key Laboratory of Quark & Lepton Physics (MoE) & Institute of Particle Physics, CCNU, Wuhan, China Laboratoire de Physique Corpusculaire, CNRS/IN2P3, Clermont-Ferrand, France

FCPPL2016, March 30 - April 1, Strasbourg, France

Outline

Physics motivation

- Open heavy-flavour measurements with the ALICE muon spectrometer
- Analysis strategy
- Results
 - Nuclear modification factor of muons from heavy-flavour hadron decays as a function of p_T and centrality
 - Comparison to other measurements
 - Comparison with transport models
- □ Summary and outlook

Open heavy flavours in heavy-ion collisions at the LHC

- Charm and beauty guarks produced in initial hard scatterings with a short formation time $\tau_{\rm f} \sim 1/m_{\rm c/b}$ (~ 0.02-0.1 fm/c) << $\tau_{\rm QGP}$ (~ 5-10 fm/c)
- Involved in the full evolution of the QCD medium
 - Sensitive probes of the medium properties

Open heavy flavours in A-A collisions:

Investigate the hot nuclear matter effects

- \checkmark energy loss in the medium via gluon radiation and elastic collisions:
 - Color-charge and quark-mass dependence Dokshitzer & Kharzeev, PLB 519 (2001) 199
 - Expected: $\Delta E_{a} > \Delta E_{u,d,s} > \Delta E_{c} > \Delta E_{b}$ $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$?
- participation in the collective expansion

Observations

✓ Nuclear model

odification factor
$$R_{AA}(p_T) = \frac{1}{\langle T_{AA} \rangle} \times \frac{dN_{AA}/dp_T}{d\sigma_{pp}/dp_T}$$

Elliptic flow,
$$v_2$$
: $\frac{2\pi}{N} \frac{dN}{d\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \psi_n)]$ with $v_2 = <\cos[2(\varphi - \psi_n)]$

Open heavy flavours in pp and p-Pb collisions at the LHC

- Heavy flavours in pp collisions: Test of pQCD calculations and reference for p-Pb and Pb-Pb collisions
- Heavy flavours in p-A collisions:
- ✓ Control experiment for Pb-Pb collisions
- Cold nuclear matter effects :
 - nuclear modification of parton distribution functions: shadowing/ gluon saturation^[1]
 [1]H.Fujii and K.Watanabe, Nucl.Phys.A915(2013) 1
 - energy loss^[2]
 - [2]I. Vitev, Phys. Rev. C75(2007) 064906
 - *k*_T broadening via multiple soft scatterings in the initial state^[3]
 [3] X.N. Wang, Phys.Rev. C61(2000) 064910

Ratio of PDF (gluons) in the nucleus and in the nucleon

K.J. Eskola et al., JHEP 0904(2009) 65
D.E. Kharzeev et al.,arXiv:1025.1554[hep-ph]
F.Dominguez et al., arXiv: 1109.1250[hep-ph]
R.Vogt, Phys.Rev C81 (2010) 044903
F. Arleo et al., arXiv: 1204.4609[hep-ph]
C. Lourenco et al., JHEP 0902 (2009) 014

Open heavy-flavours with the ALICE muon spectrometer

Semi-muonic decays: D, B, Λ_c , ... $\rightarrow \mu$ + anything

The aim of this analysis work is: measure R_{AA} of muons from heavy-flavour hadron decays in a wider p_T internal

Data sample and Muon selection

Data sample: 2011 Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Trigger condition: signal in the two V0 arrays (minimum bias trigger) with

✓ at least one muon with a low p_T trigger threshold of 1 GeV/c

(MSL data sample, $L_{int} \approx 3.6 \ \mu b^{-1}$, 0-90% centrality class)

✓ at least one muon with a high p_T trigger threshold of 4.2 GeV/c (MSH data sample, $L_{int} \approx 63.8 \ \mu b^{-1}$, 0-90% centrality class)

Muon track selection

- Acceptance & geometrical cuts select tracks in the spectrometer acceptance
- *p*_T cut at 2 GeV/c reject μ from secondary π, K
- Tracks matched with trigger reject hadrons crossing the absorber
- p×DCA in 6 σ reject beam-gas interactions & particles produced in the absorber

$\mu^{\pm} \leftarrow b, c \text{ identification}$

Remaining background: μ ← primary π, K decays estimated via data-tuned MC cocktail (Pb-Pb and p-Pb collisions) or MC (pp collisions); μ ← W (high p_T) via POWHEG simulation

Background estimation in Pb-Pb collisions

- $\mu \leftarrow K/\pi$ (main background contribution at low and intermediate p_T)
 - ✓ Input: K/ π spectra in pp and Pb–Pb collisions at central rapidity measured with ALICE extrapolated in p_T
 - ✓ extrapolate K/ π spectra in Pb-Pb collisions to forward rapidity

$$\frac{1}{N_{ev}} \frac{d^2 N_{AA}^{K/\pi}}{dp_T dy} = n_y \times \frac{1}{N_{ev}} \frac{d N_{AA}^{K/\pi}}{dp_T} |_{|y| < 0.8} \times \exp(\frac{-y^2}{2\sigma_y^2})$$

varying n_y between 0 and 200% to estimate the systematic uncertainty on unknown quenching effect at forward rapidity, the central value obtained with $n_y = 1$; $\sigma_y = 3.18$ estimated from PYTHIA and PHOJET (systematic uncertainty $\approx 14\%$)

✓ produce the K/ π decay muon background in Monte-Carlo with fast detector simulation

■ $\mu \leftarrow W$ (dominant backgroud contribution at high p_T)

 Pb-Pb templates obtained by combining pp, pn, np and nn with POWHEG simulation

$$\frac{d\sigma_{Pb-Pb}}{dp_t} \approx \frac{Z^2}{A^2} \times \frac{d\sigma_{pp}}{dp_t} + \frac{(A-Z)^2}{A^2} \times \frac{d\sigma_{nn}}{dp_t} + \frac{Z \cdot (A-Z)}{A^2} \left\{ \frac{d\sigma_{pn}}{dp_t} + \frac{d\sigma_{np}}{dp_t} \right\}$$
(A = 208, Z = 82)

pp reference

$$R_{\rm AA}(p_T) = \frac{1}{\langle T_{\rm AA} \rangle} \cdot \frac{dN_{\rm AA}^{\rm inclusive \ \mu}/dp_T - dN_{\rm AA}^{\rm bkg}/dp_T}{d\sigma_{\rm pp}^{\mu < -\rm HF}/dp_T}$$

- *p*_T-differential cross section of heavy-flavour decay muons in 2 < *p*_T < 10 GeV/*c* is published systematic uncertainty: 14-20% (Phys. Rev. Lett. 109 (2012) 112301)
- Total systematic uncertainty: from FONLL (16-24%); from fit ratio between data & FONLL (6%)

- Suppression of heavy-flavour decay muon yields in the 10% most central collisions compared to binary-scaled pp yields
- > Stronger suppression in central collisions than in peripheral collisions reaching a factor of 3-4 in the 10% most central collisions and in $6 < p_T < 12 \text{ GeV/}c$

Centrality dependence of R_{AA} of heavy-flavour decay muons

- ➢ Investigated in the region 6 < p_T < 12 GeV/c where the contribution of muons from B decays becomes dominant in pp collisions</p>
- Suppression increases with increasing centrality, reaches a factor of about 4 in the 10% most central collisions

Comparison with the p_{T} -differential **R**_{AA} of heavy-flavour decay electrons

- Compatible results within uncertainties for heavy-flavour decay electrons (|y| < 0.6) and HF decay muons (2.5 < y < 4) R_{AA} in 0-10% centrality class
- Indicate that heavy quarks suffer a strong interaction in a wide rapidity internal

Pb-Pb: ALICE Collaboration, Phys. Rev. Lett: 109, 112301 (2012)

- > R_{pPb} at forward rapidity: consistent with unity within uncertainties over whole p_T range
- > R_{pPb} at backward rapidity: slightly larger than unity in 2 < p_T < 4 GeV/*c* and compatible with unity at higher p_T
- > R_{pPb} being consistent with unity, the suppression observed at high p_T in central Pb-Pb collisions results from final-state effects related to parton energy loss

*p*_T-differential *v*₂ of heavy-flavour decay muons

 \Box v_2 sensitive to:

- Low p_T: collective motion
- High p_T: path-length dependence of parton energy loss

$$\frac{2\pi}{N}\frac{dN}{d\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \psi_n)]$$

 v_2 , 2nd order Fourier coefficient is the elliptic flow

□ $\mu \leftarrow c$, b measured at forward rapidity in 2.5 < y < 4 exhibit a positive v_2 : a 3 σ effect for 3 < p_T < 5 GeV/*c* in 20-40% centrality class

Confirmation of significant interaction of heavy quarks with the medium

Comparison with models

- Simultaneous description of R_{AA} in central collisions and v₂ in semi-central collisions is challenging
- \succ R_{AA} and v_2 measurements starts to provide constraints on energy loss models

MC@ sHQ+EPOS, Coll + Rad (LPM): Phys. Rev. C 89 (2014) 014905; BAMPS: Phys. Lett. B 717 (2012) 430; TAMU elastic: arXiv: 1401.3817

Summary

Summary

- R_{AA} of muons from heavy-flavour decays measured in a wide p_T range (3 < p_T < 20 GeV/c)
 - A strong suppression of high p_T muons from heavy flavour decays is observed: a factor of about 4 in the 10% most central collisions
 - \succ R_{AA} similar to that of electrons from heavy flavour decays at central rapidity
 - > The measured suppression is due to final-state effects ($R_{pPb} \sim 1$)
- positive v₂: confirmation of significant interaction of heavy quarks with the medium
- simultaneous description of R_{AA} and v_2 is a challenge for models

Outlook

Outlook

Run 2: 2015-2018

 Measure muons from heavy-flavour hadron decays in pp and Pb-Pb collisions at 5.02 TeV with an improved precision in a new kinematic region

Thank you for your attention

Backup

Heavy-flavour decay muons: p_{T} -differential R_{FB}

Forward-to-backward ratio

 $R_{\rm FB}(2.96 < |y_{\rm CMS}| < 3.54) = \frac{d\sigma/dp_{\rm T}[\text{Forward}(2.96 < y_{\rm CMS} < 3.54)]}{d\sigma/dp_{\rm T}[\text{Backward}(-3.54 < y_{\rm CMS} < -2.96)]}$

- R_{FB} : systematically smaller than unity in 2< p_T <4 GeV/*c* and close to unity at higher p_T
- Within uncertainties, data can be described by perturbative QCD calculations with EPS09

p_{T} -differential v_2 of heavy-flavour decay muons

- > A positive v₂ from two-particle correlation methods (SP and QC2) in for $3 < p_T < 5$ GeV/c in 20-40% with a 3 σ significance when combining statistical and systematic uncertainties
- Results from QC4 are systematically lower than those from SP and QC2
 - → due to different contributions of non-flow correlations and flow fluctuations
- → A-particle Q-cumulants give same v₂ as Lee-Yang zeroes within uncertainties
 → indication that non-flow effects are suppressed with 4-particle Q-cumulants
- Smaller v_2 values with multi-particle flow methods than with two-particle methods \rightarrow an indication of flow fluctuation effects