Mass Hierarchy and the JUNO Experiment

Yifang Wang
Institute of High Energy Physics
FCPPL, March 31, 2016

Mass Hierarchy at Reactors

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13})\sin^2(2\theta_{12})\sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12})\sin^2(2\theta_{12})\sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12})\sin^2(2\theta_{13})\sin^2(\Delta_{32})$$

$$\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

$$NH: |\Delta m_{31}^2| = |\Delta m_{32}^2| + |\Delta m_{21}^2|$$

$$IH: |\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$$

L. Zhan et al., PRD78:111103,2008; PRD79:073007,2009

The JUNO Experiment

NPP	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	Operational	Planned	Planned	Under construction	Under construction
Power	17.4 GW	17.4 GW	17.4 GW	17.4 GW	18.4 GW

MC Study: Energy Scale & Resolution

Resolution based on DYB with:

- **⇒** JUNO Geometry
- **⇒** 80% photocathode coverage
- **⇒** PMT QE from 25% **→** 30%
- ⇒ Attenuation length of 20 m →
 abs. 60 m + Rayleigh scatt. 30m

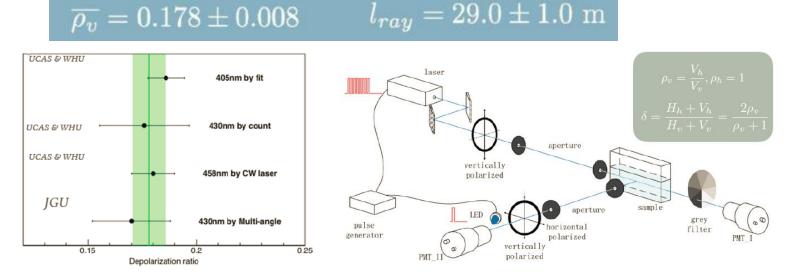
Energy scale

⇒ By introduce a self-calibration (based on ∆M²_{ee} periodic peaks), effects can be corrected and sensitivity is un-affected

Y.F. Li et al., arXiv:1303.6733

⇒ Application of this method: Relatively insensitive to continuous backgrounds, non-periodic structures

$$\frac{\sigma}{E_{\rm rec}} = \sqrt{\frac{A^2}{E_{\rm rec}} + B^2 + \frac{C^2}{E_{\rm rec}^2}}$$


Rayleigh Scattering Length

$$\frac{1}{l_{atten}} = \frac{1}{l_{abs}} + \frac{1}{l_{sca}} + \frac{1}{l_{etc.}} \qquad \qquad \frac{1}{l_{Ray}} = \boxed{f(\lambda; T, n, \beta_T, \delta)}$$

Rayleigh scattering is measured under ESC model:

$$\beta_{tot}(\theta) = \beta_{iso}\left(\frac{\pi}{2}\right) \left(\frac{6+6\delta}{6-7\delta}\right) \left(1 + \frac{1-\delta}{1+\delta}\cos^2\theta\right)$$

Four experiments gave consistent results.

 Model independent experiments are ongoing in JGU, WHU and UCAS.

Signals & Backgrounds

LS without Gd-loading for

 $\tau \sim 200 \mu s$

- Better attenuation length

 better resolution
- ⇒ Lower irreducible accidental backgrounds from LS, important for a

larger detector:

- ✓ With Gd: $\sim 10^{-12} \text{ g/g}$ → 50,000 Hz
- ✓ Without Gd: $\sim 10^{-16} \, \text{g/g}$ $\rightarrow 5 \, \text{Hz}$

IBD Signal and Backgrounds

Overburden 700m:

 $E_{\mu} \sim 211$ GeV, $R_{\mu} \sim 3.8$ Hz

Single rates:

5 Hz by LS and 5Hz by PMT

muon efficiency ~ 99.5%

Selection	IBD efficiency	IBD	Geo- νs	Accidental	$^9 \text{Li}/^8 \text{He}$	Fast n	(α, n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%			1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60			3.8		

Physics Reach

Thanks to a large θ_{13}

For 6 years,

- ♦ Ideally, The relative measurement can reach a sensitivity of 4σ , while the absolute measurement (with the help of $\Delta m^2_{\mu\mu}$ ~ 1%) can reach 5σ
- Due to the spread of reactor core distribution, relative measurement can reach a sensitivity of 3σ , while the absolute measurement can reach 4σ

Detector size: 20kt LS

Energy resolution: $3\%/\sqrt{E}$

Thermal power: 36 GW

Y.F. Li et al., arXiv:1303.6733

2016-3-31

Comparison with Other Experiments

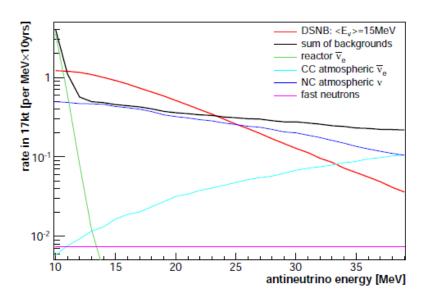
- JUNO is unique for measuring MH using reactor neutrinos
 - Independent of the CP phase and free from the matter effect: complementary to accelerator-based experiments
 - competitive in time
- Many other science goals

Precision Measurement of Mixing Parameters

- Fundamental to the Standard Model and beyond
- ullet Probing the unitarity of U_{PMNS} to ~1% level!
 - □ Uncertainty from other oscillation parameters and systematic errors, mainly energy scale, are included

	Current	JUNO
Δm_{12}^2	3%	0.6%
Δm_{23}^2	3%	0.6%
$\sin^2 \theta_{12}$	4%	0.7%
$\sin^2\theta_{23}$	11%	N/A
$\sin^2\theta_{13}$	10%	-

More precise than CKM matrix elements!


Supernova Neutrinos at JUNO

- Very high statistics
 - Several 10³ vs 10's for 1987A
- Sensitive to different types of neutrinos
- Hugh implications to astrophysics and particle physics

Diffused Supernova Neutrinos

- Important for star-formation rate, average core-collapse neutrino spectrum, rate of failed SNe, etc.
- Very likely to see them above the 3σ level if $\langle E \rangle > 15$ MeV
- Significantly improve the current limit by SuperK

Other Physics with Giant LS detector

Geo-neutrinos

– Current results:

Current results: KamLAND: 30 ± 7 TNU(*PRD 88(2013)033001*) Borexino: 38.8 ± 12.0 TNU(*PLB 722(2013)295*)

- JUNO:
 - ~ 10% precision for 3 years
 - ~ 6% precision for 10 years
- Possible to determine U/Th ratio
- Solar neutrinos
 - need LS purification, low threshold
 - background handling
- **Atmosphere neutrinos**
- **Nucleon Decay**
- Sterile neutrinos

JUNO Physics Book: arXiv: 1507.05613

Detector Concept

- A large cavern with an overburden > 700 m rock
- LS volume: × 20 KamLAND → for more statistics
- light(PE) × 5 KamLAND → for better resolution (\(\Delta M^2_{12}\) \(\Delta M^2_{23} \simeq 3\%)

JUNO CDR:

arXiv:1508.07166

Central Detector

- A huge detector in the water pool:
 - ⇒ Mechanics, optics, chemistry, ...
 - **⇒** How to keep it clean?
 - **⇒** Possibility of assembly within 1 years
- Two main options: acrylic vs balloon
- Final choice: A SS structure to hold the acrylic sphere and to mount PMTs
 - ⇒ Detailed FEA calculation in agreement with experimental data, particularly at the supporting point
 - \Rightarrow Acrylic sheets: 9m \times 3m \times 12 cm
 - **⇒** Stress less than 5 MPa everywhere

R&D and Prototyping

- Study of acrylic:
 - Property test: aging, creep, crazing,
 - **♦ 80% after 20 years**
 - ♦ No creep & crazing under 5.5 Mpa
 - **♦** Bonding test: fast bonding, T-shape bonding
 - 70 -80 % strength
 - Strength of the supporting point:
 - ~ 50 t (safety factor ~ 4)
- Prototyping:
 - **⇒** Thermal shaping of acrylic sheets
 - **⇒** Bonding of large sheets: ~ 1/100 in area
- Manufacturing method understood:
 - **⇒** SS Truss from bottom to top (2~3 months)
 - **⇒** Acrylic sphere from top to bottom(8 months)

Liquid Scintillator

- Current Choice: LAB+PPO+BisMSB
- Requirements and R&D:
 - **⇒** Long attenuation length: 15m → 30m
 - ✓ Improve raw materials
 - **✓** Improve the production process
 - **✓** Purification
 - Distillation, Filtration, Water extraction, Nitrogen stripping...
 - ⇒ High light yield: Optimization of PPO& BisMSB concentration

Linear Alky Benzene	Atte. L(m) @ 430 nm
RAW	14.2
Vacuum distillation	19.5
SiO ₂ coloum	18.6
Al ₂ O ₃ coloum	22.3
LAB from Nanjing, Raw	20
Al ₂ O ₃ coloum	25

Engineering issues:

Equipment & handling for 20kt

Raw material selection:

BKG & purity issues

A pilot LS system at Daya Bay

- Test purification principles
- System and components prototyping
- All 4 purification methods will be tested:
 - ⇒ Al2O3 column, vacuum distillation, water extraction, steam striping
- Online purification will be tested
 - ⇒ water extraction, steam striping

High QE PMT

- ♦ A new type of PMT developed by NNVC based on MCP to collect photoelectrons:
 - **⇒** Intrinsically high collection efficiency
 - ✓ No wire mesh in front of dynode
 - ✓ transparent + reflective photocathode
 - **⇒** Easy for mass production

Dynode PMT

MCP-PMT

Performance of MCP-PMT

Final Decision

	R12860	MCP-PMT
QE@410nm	~ 30% (T)	$\sim 26\%(T), 30\%(T+R)$
Collection eff.	90%	100%
Total eff.	27%	26-30 %
P/V of SPE	> 3	> 3
Rise time	7 ns	2ns
TTS	3 ns	~10 ns
Dark noise	30K	30K
After pulse	< 10%	< 3 %

Two vendors:

NNVC: 15000

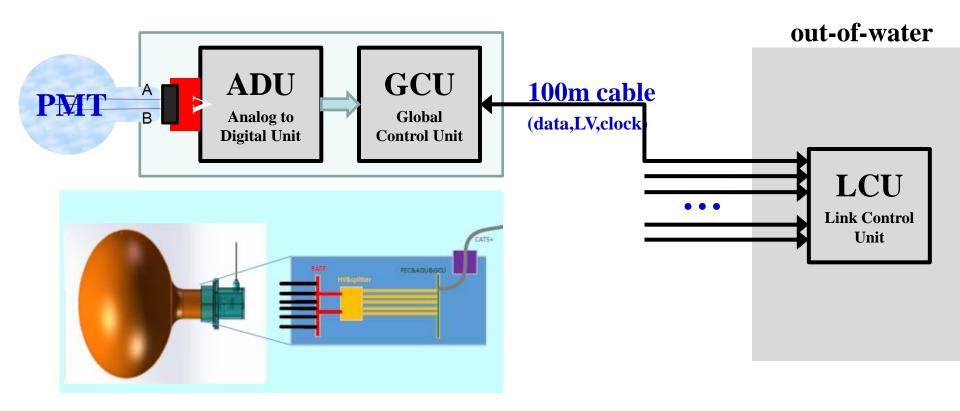
Hammamatzu: 5000

Small PMT system

- Calibrate non-uniformity and non-linearity of Large-PMTs
 - ⇒ Reduce energy scale uncertainty
 - ⇒Improve energy resolution (non-stochastic term)
- ◆ Increase optical coverage (~5%)
 - ⇒Improve energy resolution (stochastic term)
- ◆ Extend energy measurement⇒ Improve muon physics
- Supernova

HCZ XP53B20

Hamamatsu R6091



20" PMTs: 17746

3" PMT: 35794

Anatael's talk

Electronics

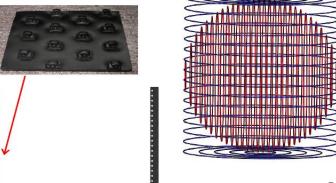
- HV, FADC, FPGA, clock/data transmission, etc.
- Allowed failure rate: 0.5%/6 years
- **♦** Issues: power, reliability, etc

Recovered clock

PMT Instrumentation

- PMT testing
 - ⇒ 18,000 20" PMTs & 36,000 3" PMTs
 - **⇒** 4 instrumented Containers for mass testing
- PMT potting
 - **⇒** With base/HV/electronics
 - ⇒ Failure rate < 0.5%/6 years
- PMT protection
 - ⇒ Mechanism & requirements understood
 - ⇒ Acrylic + steel cover with holes(plus film ?)
- PMT installation

VETO


Tasks:

- ⇒ Shield rock-related backgrounds

Detector:

- ⇒ Top tracker: refurbished OPERA scintillators
- ⇒ Water Č detector unde optimization
- Pool lining: HDPE
- Coil for magnetic field shielding: under design

Calibration

Main method

- - ✓ ACU
 - ✓ rope loop
 - ✓ "sub-marine"
- ⇒ Source into Guided tube
- ⇒ Pulsed light source

Under discussion

- ⇒ Diffused short-lived isotopes
- ⇒ Pelletron-based beam

Key technical issues

- ⇒ Source deployment

A Prototype to Test Everything

- **♦** Test all parts to the CD
 - **⇒** Type of PMTs
 - **PMT supporting structure** ⇒
 - **⇒** HV, PMT base and potting
 - **⇒** Readout electronics & DAQ
 - **⇒** LS & water system
 - **⇒** Calibration system

Civil Construction

Status of Civil Construction

Completed:

- ✓ Sloped tunnel: 870 m
 - Delayed by ~ 1 month
- ✓ Vertical shaft: 290m
 - Delayed by ~ 6 month

Issues:

✓ More water than anticipated, ~
 200 m³/h

Grounding breaking on Jan. 10, 2015

Schedule

Civil preparation: 2013-2014

Civil construction: 2014-2017

Detector component production: 2016-2017

PMT production: 2016-2019

Detector assembly & installation: 2018-2019

Filling & data taking: 2020

JUNO collaboration established

Europe (27)

Armenia(1) Yerevan Phys. InstU.Oulu Belgium(1)

ULB

Czech(1)

Charles U

France(5)

APC Paris

CPPM Marseille

IPHC Strasbourg

LLR Paris

Subatech Nantes

Finland(1)

Italy(8)

INFN-Catania

INFN-Frascati

INFN-Ferrara

INFN-Milano

INFN-Mi-Bicocca

INFN-Padova

INFN-Perugia

INFN-Roma 3

Germany(7)

FZ Jülich

RWTH Aachen

TUM

U.Hamburg

IKP FZI Jülich

U.Mainz

U.Tuebingen

Russia(3)

INR Moscow

JINR **MSU** America(4)

US(2)

UMD

UMD-Geo

Chile(2)

Catholic Univ.

of Chile BISEE

Thailand(1) SUT

Asia (31)

B.J Nor. U.

CAGS Chongqing U.

CIAE

DGUT

ECUST

Guangxi U.

HIT **IHEP**

Jilin U.

Ninan U.

Nanjing U. Natl. Chiao-Tung U.

Natl. Taiwan U. Natl. United U.

Nankai U. **NCEPU** Pekin U.

Shandong U. Shanghai JT U.

Sichuan U.

SYSU Tsinghua U.

UCAS

USTC

U. Of South China

Wuhan U. Wuyi U.

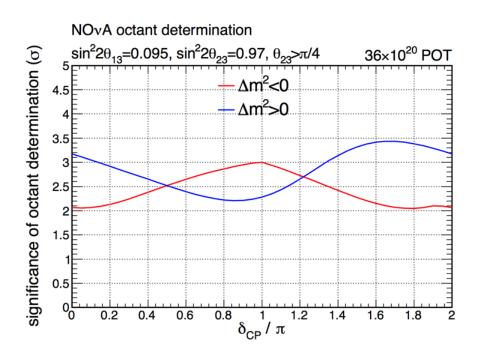
Xi'an JT U.

Xiamen U.

Summary

- As the next generation reactor neutrino experiment, JUNO is now moving ahead at a full speed
- European's contributions are essential → next talks
 - Electronics, HV, Slow control, ...
 - Top tracker veto
 - 3" PMTs, PMT testing
 - Liquid Scintillator purification

— ...



backup

NOVA

- May get mass hierarchy if lucky
- For non-maximal θ_{23} octant determination: > 95% CL for all δ_{CP} @ $\sin^2 2\theta_{23} = 0.97$

T2K and Nova: CP is known?

PINGU & ORCA

- PINGU: determine MH at ~
 3σ level with ~3 years of data
- ORCA: similar

2016-3-31

LBNF/DUNE

Mass Hierarchy Sensitivity

CP Violation Sensitivity

