Achievements and Perspectives of CMOS Pixel Sensors for HIGH-PRECISION Vertexing & Tracking Devices

M. Winter (PICSEL team of IPHC-Strasbourg)

http://www.iphc.cnrs.fr/-PICSEL-.html

9th FCPPL Workshop / Strasbourg / April 1st, 2016

Contents

- Primordial motivations & main features of CMOS sensors
- 1st architecture developped state of the art

• MIMOSA-26 (EUDET chip applications) \mapsto MIMOSA-28 (STAR-PXL)

- Extension towards more demanding experiments
 - ALICE-ITS & -MFT CBM-MVD ILC
- Perspectives for ILC-CEPC & forthcoming challenges
 - read-out speed
 architectures
- Conclusion

Original Motivation for the R&D: Vertexing at the ILC

- CMOS PIXEL SENSORS (CPS) pioneered for the vertex detector requirements :
 - * unprecedented granularity & material budget (very low power)
 - * much less demanding running conditions than at LHC
 - \Rightarrow alleviated read-out speed & radiation tolerance requests
 - $_{*}\,$ ILC duty cycle \sim 1/200 $\,$
 - \Rightarrow power saving by power pulsing sub-systems

• Vertexing goal:

* achieve high efficiency & purity flavour tagging \rightarrow charm & tau, jet-flavour !!! $\rightarrow \sigma_{R\phi,Z} \leq 5 \oplus 10/p \cdot sin^{3/2}\theta \ \mu m$ \triangleright LHC: $\sigma_{R\phi} \simeq 12 \oplus 70/p \cdot sin^{3/2}\theta$ \triangleright Comparison: $\sigma_{R\phi,Z}$ (ILD) with VXD

made of ATLAS-IBL or ILD-VXD pixels

The Central Conflict of Vertexing

- A COMPLEX SET OF STRONGLY CORRELATED ISSUES :
 - * Charged particle sensor technology :
 - highly granular, thin, low power, swift pixel sensors
 - * Micro-electronics :
 - highly integrated, low power, SEE safe, r.o. μ circuits
 - * Electronics :
 - high data transfer bandwith (no trigger), some SEE tol.
 - low mass power delivery, allowing for power cycling
 - * Mechanics :
 - rigid, ultra-light, heat but not electrically conductive, mechanical supports, possibly with $C_{\Delta t} \simeq C_{\Delta t}^{Si}$
 - very low mass, preferably air, cooling system
 - micron level alignment capability
 - * EM compliance :
 - power cycling in high B field \Rightarrow F(Lorentz)
 - higher mode beam wakefield disturbance \Rightarrow pick-up noise ?
 - $_{*}$ Radiation load and SEE compliance at T $_{room}$
 - \Rightarrow reduced material budget

The RoleS of the "Vertex" Detector

- DISPLACED VERTEX RECONSTRUCTION AND CHARACTERISATION :
 - reconstruction of collision point
 - reconstruction of D-meson and τ -lepton vertices
 - reconstruction of b-quark decays in (top-quark) jets
 - determination of displaced vertex electrical charge
 - etc.
- ROLE IN THE TRACKING :
 - track seeding (depending on main tracker)
 - low P_t track reconstruction
 - track momentum determination (in particular low P_t)
 - fake tracks mitigation (E_{miss} determination)

CMOS Pixel Sensors (CPS): Main Features

CMOS Pixel Sensors \equiv **Detector** \oplus **Front-End Electronics** in same die NWELL NMOS PMOS DIODE TRANSISTOR TRANSISTOR **PWELL PWELL** NWELL **DEEP PWELL** Epitaxial Layer P-Substrate P++

CMOS Pixel Sensors: Main Features

Sensing Node & VFEE Optimisation

- General remarks on sensing diode :
 - $_{\circ}$ should be small because : V $_{signal}$ = Q $_{coll}$ /C ; Noise \sim C ; G $_{PA}$ \sim 1/C
 - $_{\circ}\,$ BUT should not be too small since Q $_{coll} \sim$ CCE (important against NI irradiation)
- General remarks on pre-amplifier connected to sensing diode :
 - should offer high enough gain to mitigate downstream noise contributions
 - should feature input transistor with minimal noise (incl. RTS)
 - should be very close to sensing diode (minimise line C)
- General remarks on depletion voltage :
 - $_{\circ}\,$ apply highest possible voltage on sensing diode preserving charge sharing $\mapsto \sigma_{sv}$
 - alternative : backside/reverse biasing

⇒ Multiparametric trade-off to be found, based on exploratory prototypes rather than on simulations

Main Components of the Signal Processing Chain

- Typical components of read-out chain :
 - AMP : In-pixel low noise pre-amplifier
 - Filter : In-pixel filter
 - **ADC** : Analog-to-Digital Conversion : 1-bit \equiv discriminator
 - \longrightarrow may be implemented at column or pixel level
 - Zero suppression : Only hit pixel information is retained and transfered
 - \longrightarrow implemented at sensor periphery (usual) or inside pixel array
 - Data transmission : O(Gbits/s) link implemented on sensor periphery
- Read-Out alternatives :
 - Synchronous: rolling shutter architecture
 Asynchronous: data driven architecture
- Rolling shutter : best approach for twin-well processes
 - \rightarrow trade-off between performance, design complexity, pixel dimensions, power, ...

 \hookrightarrow MIMOSA-26 (EUDET), MIMOSA-28 (STAR), ...

MIMOSA-26: Established Architecture

Rolling shutter architecture applied to 1st generation of CPS applications

Widespread Application of MIMOSA-26

• EUDET Beam Telescope : adapted to sub-GeV electron beams

• about 10 copies or similar devices used at DESY, CERN, SLAC, TRIUMF, ...

Other Applications of MIMOSA-26

• Ex: Vertex Detector of NA61/SHINE Heavy Ion Experiment at CERN

(http://ph-news.web.cern.ch/content/first-pb-beam-na61shine)

MIMOSA-26 sensors
 being exposed to
 radiation tolerance tests
 with 1.2.10¹⁰ Pb ions/cm²
 on H2 beam at CERN

 Several other applications: FIRST/GSI, NA-63/CERN, CBM-MVD-demo./FAIR, hadrontherapy, X-Ray imager demo., etc.

PLUME Double-Sided Ladder Based on 12 MIMOSA-26

- ILC vertex detector triggered R&D on ultra-light double-sided ladder with ≲ 0.3% X0 material budget
- PLUME ladder :
 2x6 MIMOSA-26 (50 μm)

PLUME Double-Sided Ladder Based on 12 MIMOSA-26

- ILC vertex detector triggered R&D on ultra-light double-sided ladder with ≲ 0.3% X0 material budget
- PLUME ladder :
 2x6 MIMOSA-26 (50 μm)
- Most recent application :
 BEAST-II at SuperKEKb with
 2 PLUME ladders (0.4% X0) equipping
 IP environnement to characterise
 beam related background using
 mini-vectors ⇒ rate & direction
- Data taking starting in 2017

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

Applications of MIMOSA-28/ULTIMATE

- Beam Telescope from hadrontherapy (ex: GSI)
- Frascati Beam Telescope (0.05 % X0/plane)
 - adapted to 450 MeV electrons
 - becoming part of facility equipment
- AIDA (EU-FP7)
 - Single Arm Large Area Telescope (SALAT)
 - 4 MIMOSA-28 sensors per plane
 - \ll 0.1% X0 per plane
- Prototype of an inner tracker
 - reference requirements : BESIII upgrade
 - 3 layers (see LIU Quinyuan's talk)
 - 120 sensors thinned to 50 μm

Next Step : Upgrade of ALICE-ITS

• ALICE Inner Tracking System (ITS) foreseen to be replaced during LS2/LHC

 \rightarrow higher luminosity (\equiv collision rate), improved charm tagging (see talk of G. Martinez)

• Expected improvement in pointing resolution and tracking efficiency

From STAR/RHIC to ALICE/LHC

- CHALLENGES:
 - nearly 100 times larger sensitive area : 400 sensors (0.15 cm²) \rightarrow 25.10³ sensors (> 10 m²)
 - \sim 10 times faster read-out
 - somewhat higher radiation tolerance
 - \Rightarrow investing a new CMOS fabrication process (imposed by requirements): AMS-0.35 μm (twin-well) \rightarrow Tower-0.18 μm (quadruple-well)

ITS Pixel Sensor : Two Architectures

Pixel dimensions Event time resolution Power consumption Insensitive area Nb(T) inside pixel

27 μm x 29 μm < 10 μs < 50mW/cm 2 \gtrsim 1mm x 30mm \sim 200 Pixel dimensions Event time resolution Power consumption Insensitive area Nb(T) inside pixel $36 \mu m ext{ x } 65 \mu m$ $20 \mu s$ $\lesssim 90 ext{mW/cm}^2$ 1.5 ext{mm x } 30 ext{mm} ~ 15

- Both chips have identical dim. (15mm x 30 mm) as well as physical and electrical interfaces:
 - * position of interface pads

* electrical signaling

* steering, read-out, ... protocoles

Main Features of the Final Prototypes

- Full scale sensor building block :
 - $_{*}\,$ complete (fast) read-out chain \simeq ULTIMATE
 - $_{*}\,$ pixel area (\sim 1 cm 2) \simeq area of final building block
 - * same nb of pixels (160,000) than complete final tracker chip
 - * fabricated with 18 μ m thick high-resistivity EPI
 - $_{\ast}~$ BUT : pixels are small (22 x 32.5 μm^2) and sparsification circuitry is oversized (power !)
 - * Tested at DESY (few GeV e⁻) in June'15 and CERN-SPS (120 GeV "pions") in Oct. '15
- Large-pixel prototype without sparsification :
 - * 2 slightly different large pixels : $\circ~$ 36.0 μm x 62.5 μm $\circ~$ 39.0 μm x 50.8 μm
 - * pads over pixels (3 ML used for in-pixel circuitry)
 - $\ast\,$ fabricated with 18 $\mu{\rm m}$ thick high-resistivity EPI
 - * BUT : only \lesssim 10 mm 2 , 4,000 pixels, no sparsification
 - \ast Tested in Frascati (450 MeV e⁻) in March & May'15

Detection Performances of the Final Prototypes

- Full scale sensor building block :
 - $_{*}\,$ complete (fast) read-out chain \simeq ULTIMATE
 - $_{*}\,$ pixel area (\sim 1 cm 2) \simeq area of final building block
 - * same nb of pixels (160,000) than complete final tracker chip
 - * fabricated with 18 μ m thick high-resistivity EPI
 - $_{\ast}~$ BUT : pixels are small (22 x 32.5 μm^2) and sparsification circuitry is oversized (power !)
 - * Tested at DESY (few GeV e⁻) in June'15 and CERN-SPS (120 GeV "pions") in Oct. '15
- Large-pixel prototype without sparsification :

* 2 slightly different large pixels : \circ 36.0 μ m x 62.5 μ m \circ 39.0 μ m x 50.8 μ m

- * pads over pixels (3 ML used for in-pixel circuitry)
- $_{*}\,$ fabricated with 18 μ m thick high-resistivity EPI
- $_{*}~$ BUT : only \lesssim 10 mm 2 , 4,000 pixels, no sparsification
- $_{*}$ Tested in Frascati (450 MeV e⁻) in March & May'15

N. of 4×2 windows to cover cluster.

Vertex Detector at CEPC

- Comparison between CEPC (240 GeV) and ILC (500 GeV) requirements
 - Physics performance driven requirements equivalent for both machines
 - Running conditions driven requirements may be similar (design dependent, still under study)
 - → both machines induce beam related background in the detector dominating physics signal by several ordres of magnitude
- Some typical requirements:

Detector	σ_{sp}	t_{int}	Dose (30°C)	Fluence $(30^{\circ}C)$
ILD-VXD/In	$<$ 3 μm	50/10 μs	< 100 kRad	\lesssim 10 11 n $_{eq}$ /cm 2
ILD-VXD/Out	\lesssim 4 μm	100 μs	< 10 kRad	\lesssim 10 10 n $_{eq}$ /cm 2

• Special attention: power < 50 mW/cm 2 (power cycling required ?)

Validation of CPS for ILD Vertex Detector

• Medium-size proto. of each sensor fab. in AMS-0.35 μm process (2012)

ILD-VXD/In: accurate / swift

- ILD-VXD/Out: power saving
- \Rightarrow All measured performances comply with requirements

Validation of CPS for ILD Vertex Detector

• Medium-size proto. of each sensor fab. in AMS-0.35 μm process (2012)

ILD-VXD/In: accurate / swift

- ILD-VXD/Out: power saving
- \Rightarrow All measured performances comply with requirements
- BUT requirements provide little safety margin (lumi, BG), no track seeding, ...

CPS for CEPC

- CMOS PIXEL SENSORS RETAINED FOR R&D WITH INITIAL FUNDING FROM IHEP :
 - 1st joint MPW submission with IPHC in Novembre 2015 → expected back in April'16
 - Goal: understand charge collection performances vs diode geometry & epitaxial-layer properties

TCAD simulation

CPS for CEPC

- CMOS PIXEL SENSORS RETAINED FOR R&D WITH INITIAL FUNDING FROM IHEP :
 - 1st joint MPW submission with IPHC in Novembre 2015 \rightarrow expected back in April'16
 - Goal: understand charge collection performances vs diode geometry & epitaxial-layer properties

- Funding request sent to MOST for next steps
- Collaboration of 4 groups from IHEP, Shandong Univ., Wuhan and IPHC
- ALSO: EXPLORING THE TECHNOLOGY POTENTIAL FOR TRACKING SUB-SYSTEMS
 - large pixels \rightarrowtail 10 μm resolution

the address

- \ll 1% X_0 per layer

Noria Based CPS Architecture for ILC&CEPC Double&Single Bunch Id.

SUMMARY - CONCLUSION

- CPS tend to comply with an increasing range of applications privileging highly granular & thin (low power) pixel devices :
 - $\Rightarrow \text{ STAR-PXL, CBM-MVD1, ILD-VXD(500), ..., ALICE-ITS, ILD-VXD(1000)}$ (also attractive for large areas $\rightarrow \text{ cost, power}$)
 - Architectures developed in AMS-0.35 μm CMOS process comply with present requirements of an ILC vertex detector (not including seed tracking)
- Faster (low power) read-out would alleviate vulnerability to unknowns associated to beam related background ⇒ major motivation for further R&D in CPS, single bunch tagging being the ultimate (realistic) goal

SUMMARY - CONCLUSION

- CPS tend to comply with an increasing range of applications privileging highly granular & thin (low power) pixel devices :
 - $\Rightarrow \text{ STAR-PXL, CBM-MVD1, ILD-VXD(500), ..., ALICE-ITS, ILD-VXD(1000)}$ (also attractive for large areas $\rightarrow \text{ cost, power}$)
 - Architectures developed in AMS-0.35 μm CMOS process comply with present requirements of an ILC vertex detector (not including seed tracking)
- Faster (low power) read-out would alleviate vulnerability to unknowns associated to beam related background ⇒ major motivation for further R&D in CPS, single bunch tagging being the ultimate (realistic) goal
- A 0.18 µm CMOS process has been validated (via ALICE-ITS/MFT upgrade), which offers the potential to address this goal (incl. large area tracking devices)
 ⇒ Collaboration between IHEP, Shandong, Wuhan & IPHC aims for this goal

SUMMARY - CONCLUSION

- CPS tend to comply with an increasing range of applications privileging highly granular & thin (low power) pixel devices :
 - $\Rightarrow \text{ STAR-PXL, CBM-MVD1, ILD-VXD(500), ..., ALICE-ITS, ILD-VXD(1000)}$ (also attractive for large areas $\rightarrow \text{ cost, power}$)
 - Architectures developed in AMS-0.35 μm CMOS process comply with present requirements of an ILC vertex detector (not including seed tracking)
- Faster (low power) read-out would alleviate vulnerability to unknowns associated to beam related background ⇒ major motivation for further R&D in CPS, single bunch tagging being the ultimate (realistic) goal
- A 0.18 µm CMOS process has been validated (via ALICE-ITS/MFT upgrade), which offers the potential to address this goal (incl. large area tracking devices)
 ⇒ Collaboration between IHEP, Shandong, Wuhan & IPHC aims for this goal
- Numerous spin-offs expected: imaging (single photon counting), cancer therapy (beam monitor, on-line imager), ..., large scale soldering inspection, ...

Motivation for Developing CMOS Sensors

- CPS development triggered by need of very high granularity & low material budget
- Applications exhibit much milder running conditions than pp/LHC
 - \Rightarrow Relaxed speed & radiation tolerance specifications
- Increasing panel of existing, foreseen or potential application domains :
 - Heavy Ion Collisions : STAR-PXL, ALICE-ITS, CBM-MVD, NA61, ...
 - ∘ e⁺e[−] collisions : ILC, BES-3, ...
 - Non-collider experiments : FIRST, NA63, Mu3e, PANDA, ...
 - High precision beam telescopes adapted to medium/low energy electron beams :
 - \hookrightarrow few μm resolution achievable on DUT with EUDET-BT (DESY), **BTF-BT (Frascati)**, ...

Radiation Tolerance

Improving Speed and Radiation Tolerance

O(10 2) μs

How to improve speed & radiation tolerance while preserving 3-5 μm precision & < 0.1% X $_0$?

O(10) μs

O(1) μs

EUDET/STAR

2010/14

 \rightarrow

ALICE/CBM 2015/2019 \rightarrow \rightarrow

Speed vs Pixel Dimensions

- Pixel dimensions govern the spatial resolution at the expense of read-out speed
 - \Rightarrow Trade-off to be found specific to each application

Pixel pitch	$<$ 10 μm	\gtrsim 15 μm	$>$ 20 μm	\gtrsim 25 μm	\lesssim 50 μm
Nb(T)	2–3	15	\gtrsim 50	\gtrsim 200	HV: few 10 2
σ_{sp} [μm]	\lesssim 1x1	< 3x3	< 5x5	\lesssim 5x5	\gtrsim 10x10
Δt [μs]	10 ³	\lesssim 30/200	\gtrsim 10-15	< 10	10^{-2}
Pre-Amp+Filter	Out	In-Pix	In-Pix	In-Pix	In-Pix
Discrimination	Out	Out	In-Pix	In-Pix	In-Pix
Sparsification	Out	Out	Out	In-Pix	In-Pix
Ex.(chip)	Mimosa-18	ULTIMATE/MISTRAL	ASTRAL	ALPIDE	HV-CMOS
Depleted	No	No	No	Yes	YES
CMOS Process	AMS-0.35	AMS-0.35/Tower-0.18	Tower-0.18	Tower-0.18	AMS-0.35/0.18
Ex.(appli.)	Beam Tele.	STAR-PXL/ALICE-ITS	ALICE-ITS	ALICE-ITS	LHC ?

Sensor Development Organisation

