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Original Motivation for the R&D: Vertexing at the ILC

• CMOS PIXEL SENSORS (CPS) pioneered for the

vertex detector requirements :

> unprecedented granularity & material budget (very low power)

> much less demanding running conditions than at LHC

⇛ alleviated read-out speed & radiation tolerance requests

> ILC duty cycle ∼ 1/200

⇛ power saving by power pulsing sub-systems

• Vertexing goal:

> achieve high efficiency & purity flavour tagging

֌ charm & tau, jet-flavour !!!

→֒ σRφ,Z ≤ 5 ⊕ 10/p · sin3/2θ µm

⊲ LHC: σRφ ≃ 12 ⊕ 70/p · sin3/2θ

⊲ Comparison: σRφ,Z (ILD) with VXD

made of ATLAS-IBL or ILD-VXD pixels ֌

Transverse Momentum [GeV/c]
1 10

m
]

µ
P

oi
nt

in
g 

re
so

lu
tio

n 
[

10

20

30

40

50

60

70

80

90

100

Pointing resolution .vs. Pt

ATLAS-IBL: resolution in Z

φATLAS-IBL: resolution in r

CMOS

2



The Central Conflict of Vertexing
• A COMPLEX SET OF STRONGLY CORRELATED ISSUES :

> Charged particle sensor technology :

• highly granular, thin, low power, swift pixel sensors

> Micro-electronics :

• highly integrated, low power, SEE safe, r.o. µcircuits

> Electronics :

• high data transfer bandwith (no trigger), some SEE tol.

• low mass power delivery, allowing for power cycling

> Mechanics :

• rigid, ultra-light, heat but not electrically conductive,

mechanical supports, possibly with C∆t ≃ CSi
∆t

• very low mass, preferably air, cooling system

• micron level alignment capability

> EM compliance :

• power cycling in high B field ⇛ F(Lorentz)

• higher mode beam wakefield disturbance ⇛ pick-up noise ?

> Radiation load and SEE compliance at T room

⇛ reduced material budget

ւ

տ
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The RoleS of the ”Vertex” Detector

• DISPLACED VERTEX RECONSTRUCTION AND CHARACTERISATION :

• reconstruction of collision point

• reconstruction of D-meson

and τ -lepton vertices

• reconstruction of b-quark decays

in (top-quark) jets

• determination of displaced vertex electrical charge

• etc.

• ROLE IN THE TRACKING :

• track seeding (depending on main tracker)

• low Pt track reconstruction

• track momentum determination (in particular low Pt)

• fake tracks mitigation (Emiss determination)
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CMOS Pixel Sensors (CPS): Main Features

• CMOS Pixel Sensors ≡ Detector ⊕ Front-End Electronics in same die

ց ց
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CMOS Pixel Sensors: Main Features

• R&D addresses Sensing Element ⊕ Read-Out µcircuitry

ց ց
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Sensing Node & VFEE Optimisation

• General remarks on sensing diode :

◦ should be small because : Vsignal = Qcoll/C ; Noise ∼ C ; GP A ∼ 1/C

◦ BUT should not be too small since Qcoll ∼ CCE (important against NI irradiation)

• General remarks on pre-amplifier connected to sensing diode :

• should offer high enough gain to mitigate downstream noise contributions

• should feature input transistor with minimal noise (incl. RTS)

• should be very close to sensing diode (minimise line C)

• General remarks on depletion voltage :

◦ apply highest possible voltage on sensing diode

preserving charge sharing 7→ σsp

◦ alternative : backside/reverse biasing

⇛ Multiparametric trade-off to be found,
based on exploratory prototypes rather than on simulations
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Main Components of the Signal Processing Chain

• Typical components of read-out chain :

◦ AMP : In-pixel low noise pre-amplifier

◦ Filter : In-pixel filter

◦ ADC : Analog-to-Digital Conversion : 1-bit ≡ discriminator

→֒ may be implemented at column or pixel level

◦ Zero suppression : Only hit pixel information is retained and transfered

→֒ implemented at sensor periphery (usual) or inside pixel array

◦ Data transmission : O(Gbits/s) link implemented on sensor periphery

• Read-Out alternatives :

◦ Synchronous : rolling shutter architecture ◦ Asynchronous : data driven architecture

• Rolling shutter : best approach for twin-well processes

→֒ trade-off between performance, design complexity, pixel dimensions, power, ...

→֒ MIMOSA-26 (EUDET), MIMOSA-28 (STAR), ...
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MIMOSA-26: Established Architecture

• Rolling shutter architecture applied to 1st generation of C PS applications
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Widespread Application of MIMOSA-26

• EUDET Beam Telescope : adapted to sub-GeV electron beams

• about 10 copies or similar devices used at DESY, CERN, SLAC, T RIUMF, ...

10



Other Applications of MIMOSA-26

• Ex: Vertex Detector of NA61/SHINE Heavy Ion Experiment at CE RN

(http://ph-news.web.cern.ch/content/first-pb-beam-na61shine)

• MIMOSA-26 sensors

being exposed to

radiation tolerance tests

with 1.2·1010Pb ions/cm2

on H2 beam at CERN

• Several other applications: FIRST/GSI, NA-63/CERN, CBM-MVD-demo./FAIR,

hadrontherapy, X-Ray imager demo., etc.
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PLUME Double-Sided Ladder Based on 12 MIMOSA-26

• ILC vertex detector triggered
R&D on ultra-light
double-sided ladder with
. 0.3% X0 material budget

• PLUME ladder :
2x6 MIMOSA-26 (50 µm)
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PLUME Double-Sided Ladder Based on 12 MIMOSA-26

• ILC vertex detector triggered
R&D on ultra-light
double-sided ladder with
. 0.3% X0 material budget

• PLUME ladder :
2x6 MIMOSA-26 (50 µm)

• Most recent application :

BEAST-II at SuperKEKb with

2 PLUME ladders (0.4% X0) equipping

IP environnement to characterise ⇛
beam related background using

mini-vectors ⇛ rate & direction

• Data taking starting in 2017
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State-of-the-Art : STAR-PXL
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State-of-the-Art : STAR-PXL
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State-of-the-Art : STAR-PXL

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

PRELIMINARY - courtesy of STAR collaboration
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State-of-the-Art : STAR-PXL

Validation of CPS for HEP (25/09/14 : DoE final approval, based on vertexing performance assessment)

PRELIMINARY courtesy of STAR collaboration
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Applications of MIMOSA-28/ULTIMATE

• Beam Telescope from hadrontherapy (ex: GSI)

• Frascati Beam Telescope (0.05 % X0/plane)

• adapted to 450 MeV electrons ⇛
• becoming part of facility equipment

• AIDA (EU-FP7)

• Single Arm Large Area Telescope (SALAT)

• 4 MIMOSA-28 sensors per plane ⇛
• ≪ 0.1% X0 per plane

• Prototype of an inner tracker

• reference requirements : BESIII upgrade

• 3 layers (see LIU Quinyuan’s talk)

• 120 sensors thinned to 50 µm
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Next Step : Upgrade of ALICE-ITS

• ALICE Inner Tracking System (ITS) foreseen to be replaced du ring LS2/LHC

→֒ higher luminosity (≡ collision rate), improved charm tagging (see talk of G. Martinez)

• Expected improvement in pointing resolution and tracking e fficiency
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From STAR/RHIC to ALICE/LHC

• CHALLENGES:

• nearly 100 times larger sensitive area : 400 sensors (0.15 cm2) ֌ 25·103 sensors (> 10 m2)

• ∼ 10 times faster read-out

• somewhat higher radiation tolerance

⇛ investing a new CMOS fabrication process (imposed by requir ements):

AMS-0.35µm (twin-well) ֌ Tower-0.18µm (quadruple-well)
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ITS Pixel Sensor : Two Architectures

Pixel dimensions 27 µm x 29µm Pixel dimensions 36 µm x 65µm

Event time resolution < 10µs Event time resolution 20 µs

Power consumption < 50mW/cm 2 Power consumption . 90mW/cm 2

Insensitive area & 1mm x 30mm Insensitive area 1.5mm x 30mm

Nb(T) inside pixel ∼ 200 Nb(T) inside pixel ∼ 15

• Both chips have identical dim. (15mm x 30 mm) as well as physic al and electrical interfaces:

> position of interface pads > electrical signaling > steering, read-out, ... protocoles
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Main Features of the Final Prototypes

• Full scale sensor building block : FSBB-M0bis

> complete (fast) read-out chain ≃ ULTIMATE

> pixel area (∼ 1 cm2) ≃ area of final building block

> same nb of pixels (160,ooo) than complete final tracker chip

> fabricated with 18 µm thick high-resistivity EPI

> BUT : pixels are small (22 x 32.5 µm2) and

sparsification circuitry is oversized (power !)

> Tested at DESY (few GeV e −) in June’15

and CERN-SPS (120 GeV ”pions”) in Oct. ’15

• Large-pixel prototype without sparsification : MIMOSA-22THRb

> 2 slightly different large pixels : ◦ 36.0 µm x 62.5 µm

◦ 39.0 µm x 50.8 µm

> pads over pixels (3 ML used for in-pixel circuitry)

> fabricated with 18 µm thick high-resistivity EPI

> BUT : only . 10 mm2, 4,ooo pixels, no sparsification

> Tested in Frascati (450 MeV e −) in March & May’15
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Detection Performances of the Final Prototypes

• Full scale sensor building block :

> complete (fast) read-out chain ≃ ULTIMATE

> pixel area (∼ 1 cm2) ≃ area of final building block

> same nb of pixels (160,ooo) than complete final tracker chip

> fabricated with 18 µm thick high-resistivity EPI

> BUT : pixels are small (22 x 32.5 µm2) and

sparsification circuitry is oversized (power !)

> Tested at DESY (few GeV e −) in June’15

and CERN-SPS (120 GeV ”pions”) in Oct. ’15

• Large-pixel prototype without sparsification :

> 2 slightly different large pixels : ◦ 36.0 µm x 62.5 µm

◦ 39.0 µm x 50.8 µm

> pads over pixels (3 ML used for in-pixel circuitry)

> fabricated with 18 µm thick high-resistivity EPI

> BUT : only . 10 mm2, 4,ooo pixels, no sparsification

> Tested in Frascati (450 MeV e −) in March & May’15
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Vertex Detector at CEPC

• Comparison between CEPC (240 GeV) and ILC (500 GeV) requirem ents

• Physics performance driven requirements equivalent for both machines

• Running conditions driven requirements may be similar (design dependent, still under study)

→֒ both machines induce beam related background in the detector

dominating physics signal by several ordres of magnitude

• Some typical requirements:

Detector σsp tint Dose (30◦C ) Fluence (30◦C )

ILD-VXD/In < 3 µm 50/10 µs < 100 kRad . 1011neq /cm2

ILD-VXD/Out . 4 µm 100 µs < 10 kRad . 1010neq /cm2

• Special attention: power < 50 mW/cm 2 (power cycling required ?)
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Validation of CPS for ILD Vertex Detector

Detector σsp tint Dose (30◦C ) Fluence (30◦C )

ILD-VXD/In < 3 µm 50/10 µs < 100 kRad . 1011neq /cm2

ILD-VXD/Out . 4 µm 100 µs < 10 kRad . 1010neq /cm2

• Medium-size proto. of each sensor fab. in AMS-0.35 µm process (2012)

• ILD-VXD/In: accurate / swift • ILD-VXD/Out: power saving

⇛ All measured performances comply with requirements
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Validation of CPS for ILD Vertex Detector

Detector σsp tint Dose (30◦C ) Fluence (30◦C )

ILD-VXD/In < 3 µm 50/10 µs < 100 kRad . 1011neq /cm2

ILD-VXD/Out . 4 µm 100 µs < 10 kRad . 1010neq /cm2

• Medium-size proto. of each sensor fab. in AMS-0.35 µm process (2012)

• ILD-VXD/In: accurate / swift • ILD-VXD/Out: power saving

⇛ All measured performances comply with requirements

• BUT requirements provide little safety margin (lumi, BG), n o track seeding, ...
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CPS for CEPC
• CMOS PIXEL SENSORS RETAINED FOR R&D WITH INITIAL FUNDING FROM IHEP :

• 1st joint MPW submission with IPHC in Novembre 2015 ֌ expected back in April’16

• Goal: understand charge collection performances vs diode geometry & epitaxial-layer properties
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CPS for CEPC
• CMOS PIXEL SENSORS RETAINED FOR R&D WITH INITIAL FUNDING FROM IHEP :

• 1st joint MPW submission with IPHC in Novembre 2015 ֌ expected back in April’16

• Goal: understand charge collection performances vs diode geometry & epitaxial-layer properties

• Funding request sent to MOST for next steps

• Collaboration of 4 groups from IHEP, Shandong Univ., Wuhan a nd IPHC

• ALSO: EXPLORING THE TECHNOLOGY POTENTIAL FOR TRACKING SUB-SYSTEMS

• large pixels ֌ 10 µm resolution • ≪ 1% X0 per layer
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Noria Based CPS Architecture for ILC&CEPC Double&Single Bu nch Id.

(possibly after cluster selection)

Still only a concept, not yet a design
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SUMMARY - CONCLUSION

◦ CPS tend to comply with an increasing range of applications
privileging highly granular & thin (low power) pixel device s :

⇛ STAR-PXL, CBM-MVD1, ILD-VXD(500), ..., ALICE-ITS, ILD-VXD(1000)

(also attractive for large areas ֌ cost, power)

⇛ Architectures developed in AMS-0.35 µm CMOS process comply with

present requirements of an ILC vertex detector (not including seed tracking)

◦ Faster (low power) read-out would alleviate vulnerability to unknowns associated

to beam related background ⇛ major motivation for further R&D in CPS,

single bunch tagging being the ultimate (realistic) goal
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present requirements of an ILC vertex detector (not including seed tracking)

◦ Faster (low power) read-out would alleviate vulnerability to unknowns associated

to beam related background ⇛ major motivation for further R&D in CPS,

single bunch tagging being the ultimate (realistic) goal

◦ A 0.18 µm CMOS process has been validated (via ALICE-ITS/MFT upgrade),

which offers the potential to address this goal (incl. large area tracking devices)

⇛ Collaboration between IHEP, Shandong, Wuhan & IPHC aims for this goal
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SUMMARY - CONCLUSION

◦ CPS tend to comply with an increasing range of applications
privileging highly granular & thin (low power) pixel device s :

⇛ STAR-PXL, CBM-MVD1, ILD-VXD(500), ..., ALICE-ITS, ILD-VXD(1000)

(also attractive for large areas ֌ cost, power)

⇛ Architectures developed in AMS-0.35 µm CMOS process comply with

present requirements of an ILC vertex detector (not including seed tracking)

◦ Faster (low power) read-out would alleviate vulnerability to unknowns associated

to beam related background ⇛ major motivation for further R&D in CPS,

single bunch tagging being the ultimate (realistic) goal

◦ A 0.18 µm CMOS process has been validated (via ALICE-ITS/MFT upgrade),

which offers the potential to address this goal (incl. large area tracking devices)

⇛ Collaboration between IHEP, Shandong, Wuhan & IPHC aims for this goal

◦ Numerous spin-offs expected: imaging (single photon counting), cancer therapy (beam monitor,

on-line imager), ..., large scale soldering inspection, ...

32



Motivation for High Precision CMOS Sensors
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Motivation for Developing CMOS Sensors

Quadrature of the
Vertex Detector

• CPS development triggered by need of
very high granularity & low material budget

• Applications exhibit much milder
running conditions than pp/LHC

⇛ Relaxed speed & radiation tolerance specifications

• Increasing panel of existing, foreseen
or potential application domains :

◦ Heavy Ion Collisions : STAR-PXL, ALICE-ITS, CBM-MVD, NA61, ...

◦ e+e− collisions : ILC, BES-3, ...

◦ Non-collider experiments : FIRST, NA63, Mu3e, PANDA, ...

◦ High precision beam telescopes adapted to medium/low energy electron beams :

→֒ few µm resolution achievable on DUT with EUDET-BT (DESY), BTF-BT (Frascati) , ...
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Radiation Tolerance
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Improving Speed and Radiation Tolerance

How to improve speed & radiation tolerance
while preserving 3-5 µm precision & < 0.1% X0 ?

O(102) µs

ց

O(10) µs

ց
O(1) µs

©?
EUDET/STAR ֌ ALICE/CBM ֌ ?X?/ILC

2010/14 ֌ 2015/2019 ֌ & 2020
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Speed vs Pixel Dimensions

• Pixel dimensions govern the spatial resolution at the expen se of read-out speed

⇛ Trade-off to be found specific to each application

Pixel pitch < 10 µm & 15 µm > 20 µm & 25 µm . 50 µm

Nb(T) 2–3 15 & 50 & 200 HV: few 102

σsp [µm] . 1x1 < 3x3 < 5x5 . 5x5 & 10x10

∆t [µs] 103 . 30/200 & 10-15 < 10 10−2

Pre-Amp+Filter Out In-Pix In-Pix In-Pix In-Pix

Discrimination Out Out In-Pix In-Pix In-Pix

Sparsification Out Out Out In-Pix In-Pix

Ex.(chip) Mimosa-18 ULTIMATE/MISTRAL ASTRAL ALPIDE HV-CMOS

Depleted No No No Yes YES

CMOS Process AMS-0.35 AMS-0.35/Tower-0.18 Tower-0.18 Tower-0.18 AMS-0.35/0.18

Ex.(appli.) Beam Tele. STAR-PXL/ALICE-ITS ALICE-ITS ALICE-ITS LHC ?
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Sensor Development Organisation
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