WWW Analysis with 8 TeV data on ATLAS

Cristinel Diaconu, Yanwen Liu, Emmanuel Monnier, Ruiqi Zhang

Introduction

- Study WWWW vertex and HWW couplings, , first search for WWW production on ATLAS.
- Search in fully leptonic channel: cleanest signature.
- Any deviation from theoretical prediction will provide hints for new physics.
- Previous study on WWWW vertex by ssWW analysis.
- There is another WWW measurement for 2l2j final state.
- Now two analyses have been combined for one paper.

hew physics.

$$\mathcal{L}_{S,0} = \frac{f_0}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D_\nu \Phi \right] \times \left[(D^\mu \Phi)^{\dagger} D^\nu \Phi \right]$$

$$\mathcal{L}_{S,1} = \frac{f_1}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D^\mu \Phi \right] \times \left[(D_\nu \Phi)^{\dagger} D^\nu \Phi \right]$$

Higgs Field

anomalous quartic gauge coupling

Sample		Cross-section [fb]
MadGraph NLO	$W^+W^-W^+ \to \text{Anything}$	59.47 ± 0.11
	$W^-W^+W^- \to \text{Anything}$	28.069 ± 0.076
	$W^+H \to W^+W^+W^-(*) \to \text{Anything}$	99.106 ± 0.019
	$W^-H \to W^-W^+W^-(*) \to \text{Anything}$	54.804 ± 0.010

Signal and backgrounds

WZ->IIIv

Simulated using Powheg +Pythia 8 with three lepton filter. Charge mis-id contribution determined in data.

Fake Lepton (W,Z,WW,ttbar)

Uses data-driven estimate via Generalized Matrix Method.

ZZ->IIII

Estimated in same manner as WZ.

Zgamma

Estimated with MC using Sherpa.

ttbarV

Estimated from MC using Madgraph + Pythia samples.

ZWW+ZZZ

Estimated using Madgraph+ Pythia.

WWW Signal

Estimated using VBFNLO + Pythia 8.

Divide into 3 categories: 0 SFOS , 1 SFOS, 2 SFOS. SFOS: same flavor opposite sign lepton pair.

Electron Charge mis-Identification

- Electrons' charge can be mis-identified because of bremsstrahlung.
- Evaluate the mis-identified rate as a function of Pt and η .
 - Likelihood method:
 - Using Poisson probability to construct log-likelihood distribution.
 - $lnL = \sum_{i,j=1} \{ N_{ss}^{i,j} \ln \left[N^{i,j} (\varepsilon_i + \varepsilon_j) \right] N^{i,j} (\varepsilon_i + \varepsilon_j) \}$
 - Nss: number of events in data around Zee peak with same sign pairs.
 - N: number of total events.
 - ε_i and ε_j are the probabilities of charge misID for the two electrons in the i-th and j-th bin respectively.
 - Maximize log-likelihood to extract rates.
 - Compare reconstructed electron charge to its truth charge as cross check.
- Background subtraction performed using template fit.
- Use the data-driven rates to reweight di-boson MC in OSFOS region.

Rate and systematic

- MC based cross check ok.
- Difference between truth and likelihood in MC used as systematic.
- Effect of background in data used as another systematic.

Electron's charge mis-id

- Difference is covered partially by the systematic uncertainties of the method.
- Remaining difference could be expected from the difference in rates observed at high η and high ET and serves as justification for using the data-driven method.

Fake lepton background

• Use data driven method(Matrix Method) to estimate fake lepton backgrounds.

4x4 Matrix in the 2 lepton case, 8x8 in the 3lep case

 $N_{t\bar{t}}$

- Matrix is made up of probabilities of fake lepton.
- The probabilities are calculated separately for electrons and muons.
- Probabilities along with numbers of events selected, are used to estimate the background in signal region.

• Good agreement observed.

Estimate at pre-selection

• Backgrounds are well estimated.

Selection for signal region

	0 SFOS	1 SFOS	2 SFOS	
Pre-selection	Exactly 3 leptons with $P_T > 20 \text{ GeV}$			
	where at least one is trigger matched. (See Section 6.1)			
b-tagged Jet Veto	$N_{b-jet} = 0$ (85 % b-tagging efficiency)			
Same-Flavor Mass	$m_{\rm SF} > 20 { m GeV}$			
Z-Veto	$ m_{ee} - m_Z > 15 \text{ GeV}$	No m _{SFOS} with	$ m_{max} - m_{m} > 20 \text{ GeV}$	
$(m_Z = 91.1876 \text{ GeV})$		$m_Z - 35 \text{GeV} < m_{\text{SFOS}} < m_Z + 20 \text{ GeV}$	$ m_{\rm SFOS} - m_Z > 20 {\rm GeV}$	
Missing E_T		$E_T^{Miss} > 45 \text{ GeV}$	$E_T^{Miss} > 55 \text{ GeV}$	
Lepton-Missing E_T Angle	$ \phi(3l) - \phi(E_T^{Miss}) > 2.5$			
Inclusive Jet veto	$N_{jet} \le 1$			

Table 15: Optimized signal selection split by number of Same-Flavor Opposite-Sign (SFOS) lepton pairs.

Signal Region

• Agreement between data and signal plus background estimation is good.

Cross section and aQGC limits

- The discovery significance is tested using frequentist statistics with the background only hypothesis.
- The measurement is evaluated by using the shape of the profile likelihood ratio.
- The likelihood used is constructed as follow:

$$L(\mu, \theta) = \operatorname{Gaus}(\mathcal{L}; \mathcal{L}_0, \Delta_{\mathcal{L}}) \prod_{i \in \operatorname{Chan}} \operatorname{Pois}(N_i^{obs} | N_i^{exp}(\mu, \theta)) \prod_{j \in \operatorname{Sys}} \operatorname{Gaus}(\theta_j; \theta_j^0, 1)$$

- Combine the channels of both analyses to get the best possible measurement.
 - Full leptonic and semi-leptonic analysis.
- Cross section measured and now is under ATLAS internal review.
- No significant excess is observed, set limits on the anomalous quartic gauge coupling parameter.
- Limit on aQGC obtained and now is under ATLAS internal review.

Summary

- The WWW production is measured for the first time.
- Results being reviewed for publication.